Evaporation Redux

Watts Up With That?

Guest Post by Willis Eschenbach

I got to thinking again about the question of evaporation and rainfall. I wrote about it here a few years ago. Short version—when the earth’s surface gets warmer, we get more evaporation and thus more rainfall. Since what comes down must go up, we can use the Tropical Rainfall Measuring Mission (TRMM) satellite rainfall data to calculate the corresponding rainfall-related evaporation.

From that TRMM data, we can also calculate how much the evaporation changes with additional warming. Figure 1 shows the trends in evaporative cooling with respect to temperature, in units of W/m2 of additional evaporative cooling per degree of additional warming

CERES trends evaporative cooling per °C

Figure 1. Amount of additional evaporative cooling per additional degree of temperature. Red areas have the greatest rainfall and thus the greatest evaporative cooling. The area of greatest cooling is the Inter-Tropical Convergence Zone (ITCZ) just above the Equator. Note that this includes…

View original post 850 more words


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s