Reblogged from Musings from the Chiefio:
Earlier I looked at a subset of countries globally, comparing their “change of temperature from the average” (anomaly) for a given set of thermometers in a given country as it is found in the Global Historical Climate Network version 3.3 when compared to version 4. Now you might think that since this is “historical” it ought not change. And since it is based on “anomalies”, if you have a couple of different thermometers in the set (as the Warmers constantly insist) it would not cause a change. (After all, if it’s 1 C warmer in your front yard it’s also 1 C warmer in your back yard…) So you would expect that there ought to either be NO change, or any change will be due to the application of changed “adjustments” to the temperatures (that just happen to exactly match ALL global warming found…) But these are the “unadjusted” data sets, so ought not to have any of that.
Yet they are different. Often for what ought to be the SAME thermometer in the same time and place in history. (You can’t go back to 1850 and add a new thermometer in Cuba…)
I’ll be presenting two graphs for each country. One has black spots for the Anomaly in a given year for GHCN v3.3 in that country, and red spots for what is the same country, year, and anomaly process but from GHCN v4. Often they are different (almost always). Sometimes up to whole degrees C. Now if your thermometer selection and processing can change THE SAME PLACE AND TIME in history by 1 C, what are the odds that 1/2 C of “global warming” comes from just that sort of instrument change? I’d rank it at about 100%.
For reference, here’s the climate zones from the Wiki on South America

South America Koppen – Geiger Climate Zones
The Graphs
Since we saw Argentina and Brazil in the earlier posting, I’ll Start with Brazil, then add the countries near it to the north and away from the Andes. Then we’ll travel down the spine of the Andes ending with Chile and Argentina, then finally fill in Paraguay and Uruguay on the south side of Brazil up against Argentina. Ending with the two island clusters of the Falkland islands and South Georgia & Sandwich Islands.
Brazil
Cuba
Cuba is included in South America, but personally I’d have accounted for it in with all the other Caribbean islands.
Mostly the old data is “cooled” and the recent data given a bit of a “lift”. Looking at the raw anomalies below, it looks like Cuba has some cycles in it, and like it was “way hot” in the long ago past.
Venezuela
The past cooled by 1/4 to 3/4 C in a nice general slope. Has the past of Venezuela really cooled?…
French Guiana
Looking at the anomalies down below, not much to work with. So we get that tail in the present being changed a lot higher. But hey, what’s a full degree C of “fixing it up” anomaly change when you need to get a global 1/2 C of “warming’ out of stable actual data… But really, what a “dogs breakfast” that is. A “dip” of 1/2 C in the “baseline period” and then an added almost a full C in the most recent common data? What can possibly justify that? Remember, this is supposed to be the same place same times.. and many of the same instruments if not all of them the same.
Guyana
Oh wow. A full degree C of “dip” in the baseline near 1980, then a 2 c “FLYER” negative before 2000, then up to 1 C of “uplift” in the recent tail. Sheesh.
Suriname
1.5 C of “rise” added recently. Really? WT?… Nice 1/2 C “dip” in the tail of the baseline period.
Colombia
Then we hit Colombia and it’s just not happening. Looks rather flat and dull. Guess they were too busy with the cocaine trade to give a fig about the UN Climate Graft money… Or maybe CO2 got kinda high and forgot to warm things up… Well, someone got high…
Ecuador
Half a degree down in the baseline, to 3/4 C down, then 1/2 C up recently in the “fixing”. Now that’s someone on board with the agenda!
Peru
Actual anomalies (below) not going anywhere… Short record. What to do, what to do… How about dip it 0.4 C in the baseline and lift the near end another 1/2 C?
Bolivia
Highly volatile (see below) and not much trend, then the “fix” being all over the place. What a mess. On this we bet the global economy?
Chile
Not much really happening below, so what’s our “Go To” thing? Dip the baseilne around the ’50s and bump up the present by 1/4 C to 1/2 C.
Argentina
Paraguay
Just WOW. Drop the WHOLE past by 1/4 C, then pop up 1/5 C to a full 1.5 C in the recent data. Just WOW.
Uruguay
Guess Uruguay is not all that interesting. Not a team players. Only gets about .4 C of dip at the very end of the “baseline period” and can’t get more than 1/4 C of “lift” in the recent data.
Then we once again leave the mainland for two groups of Islands in the Southern Ocean.
The Falkland Islands
Nothing really happening in the Falklands. (In more ways than one). Gee, think a stable station in the middle of the south Atlantic Gyre might mean not much is happening? (Someone will need to fix that in v5… I’d /sarc; it but I’m not sure that’s valid…)
South Georgia and Sandwich Island
This one is interesting. Some “High Fliers” in years where the prior data set had no data. How’d they do that? Go back and put data in where none was reported? Overall, another flat island in the ocean. But with mystery fliers. Though they did manage to cool almost the entire history by about 1/3 C, so there’s that…
Tech Talk
This would basically be a repeat of the tech stuff in the prior posting, so take a look there for example code and the hows / whys / and designs.
https://chiefio.wordpress.com/2019/04/09/ghcn-v3-3-vs-v4-selected-country-anomaly-differences
In Conclusion
I’ve scattered some detail comments through the graphs and as I get time to stare at them a bit, if I see something else I’ll add it in comments. You may well see something I’ve not seen, so stare at ’em and ponder…
In general, I’ve noticed some places hardly change at all. Often very minor places like an island somewhere. Larger places look more “manicured” with loss of low going excursions in the data lately. Then there’s the general tendency to cool the past, and put “dips” in the “baseline” period used by GISStemp and Hadley (1950 to 1990). Is it really the case that all those places had just those same needs to cool the past, dip the baseline and juice up the recent highs while clipping recent lows? What physicality could possible account for that? What systematic failure of thermometer tech Globally can account for those “errors”?
To me it looks like deliberately cooking the books.