Continuous observations in the North Atlantic challenges current view about ocean circulation variability

Reblogged from Watts Up With That:

Kevin Kilty

May 10, 2019

[HiFast Note:  Figures A and B added:

osnap_array_schematic_v2_13Nov14

Figure A. OSNAP Array Schematic, source:  https://www.o-snap.org/]

20160329_OSNAP_planeview-1Figure B. OSNAP Array, source:  https://www.o-snap.org/observations/configuration/]

clip_image002Figure 1: Transect of the North Atlantic basins showing color coded salinity, and gray vertical lines showing mooring locations of OSNAP sensor arrays. (Figure from OSNAP Configuration page)

Figure 1: Transect of the North Atlantic basins showing color coded salinity, and gray vertical lines showing mooring locations of OSNAP sensor arrays. (Figure from OSNAP Configuration page)

From Physics Today (April 2019 Issue, p. 19)1:

The overturning of water in the North Atlantic depends on meridional overturning circulation (MOC) wherein warm surface waters in the tropical Atlantic move to higher latitudes losing heat and moisture to the atmosphere along the way. In the North Atlantic and Arctic this water, now saline and cold, sinks to produce north Atlantic Deep water (NADW). It completes its circulation by flowing back toward the tropics or into other ocean basins at depth, and then subsequently upwelling through a variety of mechanisms. The time scale of this overturning is 600 years or so2.

The MOC transports large amounts of heat from the tropics toward the poles, and is thought to be responsible for the relatively mild climate of northern Europe. The heat being transferred from the ocean surface back into the atmosphere at high latitudes is as large as 50W/m2, which is roughly equivalent to solar radiation reaching the surface at high latitudes during winter months2.

In order to evaluate models of ocean overturning oceanographers have relied upon hydrographic research cruises. But the time increment between successive cruises is often long, and infrequent sampling cannot measure long term trends reliably nor gauge current ocean dynamics.

To get a better handle on MOC behavior an array of sensors to continuously monitor temperature, salinity, and velocity measurements known as the Overturning in the Subpolar North Atlantic Program (OSNAP) was recently deployed across the region at multiple depths. Figure 1 shows sensor moorings in relation to the various ocean basins of the North Atlantic. Figure 2 shows data from the first 21 months of operation, and displays a rather large variability of overturning in the eastern North Atlantic between Greenland and Scotland that reaches +/-10 Sverdrup (Sv=one million cubic meters per second) monthly, and amounts to one-half the MOC’s total annual transport. Researchers had thought that such variability was only possible on time scales of decades or longer.

Figure 2: Twenty-one months of observational data showing large month to month variation in MOC flows.

Figure 2: Twenty-one months of observational data showing large month to month variation in MOC flows.

The original experimental design for sensor placement in OSNAP was predicated on much smaller variability of a few Sv per month3. The report does not address what impact this surprising level of transport variability has on validity of the experiment design; but the surprisingly large variations in flow challenge expectations derived from climate models regarding the relative amount of overturning between the Labrador Sea and the gateway to the Arctic between Greenland and Scotland.

As one oceanographer put it, the process of deep water formation and sinking of the MOC is more complex than people believed, and these results should prepare people to modify their ideas about how the oceans work. This improved data should not only help test and improve climate models, but also produce more realistic estimates of CO2 uptake and storage.

References:

1. Alex Lopatka, Altantic water carried northward sinks farther east of previous estimates, Physics Today, 72, 4, 19(2019).

2. J. Robert Toggweiler, The Ocean’s Overturning Circulation, Physics Today, 47, 11, 45(1994).

3. Susan Lozier, Bill Johns, Fiamma Straneo, and Amy Bower, Workshop for the Design of a Subpolar North Atlantic Observing System, URL= https://www.whoi.edu/fileserver.do?id=163724&pt=2&p=175489, accessed 05/10/2019.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s