10 fallacies about Arctic sea ice & polar bear survival: teachers & parents take note

polarbearscience

Summer sea ice loss is finally ramping up: first year is disappearing, as it has done every year since ice came to the Arctic millions of years ago. But critical misconceptions, fallacies, and disinformation abound regarding Arctic sea ice and polar bear survival. Ahead of Arctic Sea Ice Day (15 July), here are 10 fallacies that teachers and parents especially need to know about.

Polar_Bear_Summer_2 FINAL (2)

The cartoon above was done by Josh: you can drop off the price of a beer (or more) for his efforts here.

As always, please contact me if you would like to examine any of the references included in this post. These references are what make my efforts different from the activist organization Polar Bears International. PBI virtually never provide references within the content it provides, including material it presents as ‘educational’. Links to previous posts of mine that provide expanded explanations, images, and…

View original post 3,839 more words

Advertisements

Polar bear habitat update: open water primarily due to winds pushing pack ice

polarbearscience

Here is a look at what polar bear habitat looks like this year at the end of May compared to previous years. It helps put any predictions of impending doom into perspective.

Polar_bear Bering Sea 2007 USFWS lg

This is the time year when declining sea ice gets some people all worked up. However, declining ice is normal at this time of year and there is always variation in where the most open water appears first. At this time of year, there isn’t much ice ‘melt’ going on. Rather, what we are seeing is the opening up of shore leads and polynyas by winds.

Sea ice in Canada at 31 May

This year, as usual, open water increases with the expansion of persistent polynyas due to winds and currents. These areas increase the extent of ice edges and provide polar bears with more hunting habitat (because seals congregate near open water). This year, there is…

View original post 148 more words

Arctic Sea Ice Volume 20190526

DMI has stopped producing their Ice Volume Charts. 

[Edit:  DMI has embedded their Ice Volume charts in the Thickness Chart, here:

https://i0.wp.com/ocean.dmi.dk/arctic/icethickness/images/FullSize_CICE_combine_thick_SM_EN_20190526.pngHere’s the link to the DMI charts (click here):

So here’s the PIOMAS product.

BPIOMASIceVolumeAnomaly20190526

A linear trend fit onto a naturally cyclical physical system is ridiculous.

So, here’s a crude hand-drawn curve to their product.  Different perspective.

BPIOMASIceVolumeAnomaly20190526 with sine curve

Be wary of linear trend lines.

 

Models Wrong About the Past Produce Unbelievable Futures

Science Matters

Models vs. Observations. Christy and McKitrick (2018) Figure 3

The title of this post is the theme driven home by Patrick J. Michaels in his critique of the most recent US National Climate Assessment (NA4). The failure of General Circulation Models (GCMs) is the focal point of his presentation February 14, 2018. Comments on the Fourth National Climate Assessment. Excerpts in italics with my bolds.

NA4 uses a flawed ensemble of models that dramatically overforecast warming of the lower troposphere, with even larger errors in the upper tropical troposphere. The model ensemble also could not accommodate the “pause” or “slowdown” in warming between the two large El Niños of 1997-8 and 2015-6. The distribution of warming rates within the CMIP5 ensemble is not a true indication of a statistical range of prospective warming, as it is a collection of systematic errors. Despite a glib statement about this Assessment fulfilling…

View original post 1,135 more words

Required Reading: NIPCC 2019 Summary on Fossil Fuels

Science Matters

Those who seek the truth about global warming/climate change should welcome this latest publication from the Nongovernmental International Panel on Climate Change (NIPCC). Excerpts from the Coauthors’ introduction in italics with my bolds. H/T Lubos Motl

Climate Change Reconsidered II: Fossil Fuels assesses the costs and benefits of the use of fossil fuels (principally coal, oil, and natural gas) by reviewing scientific and economic literature on organic chemistry, climate science, public health, economic history, human security, and theoretical studies based on integrated assessment models (IAMs). It is the fifth volume in the Climate Change Reconsidered series and, like the preceding volumes, it focuses on research overlooked or ignored by the United Nations’ Intergovernmental Panel on Climate Change (IPCC).

NIPCC was created by Dr. S. Fred Singer in 2003 to provide an independent peer review of the reports of the United Nations’ Intergovernmental Panel on Climate Change (IPCC). Unlike the…

View original post 500 more words

The Greenhouse Deception Explained

NOT A LOT OF PEOPLE KNOW THAT

By Paul Homewood

A nice and concise video, well worth watching and circulating:

View original post

Scientific Hubris and Global Warming

Reblogged from Watts Up With That:

Scientific Hubris and Global Warming

Guest Post by Gregory Sloop

Notwithstanding portrayals in the movies as eccentrics who frantically warn humanity about genetically modified dinosaurs, aliens, and planet-killing asteroids, the popular image of a scientist is probably closer to the humble, bookish Professor, who used his intellect to save the castaways on practically every episode of Gilligan’s Island. The stereotypical scientist is seen as driven by a magnificent call, not some common, base motive. Unquestionably, science progresses unerringly to the truth.

This picture was challenged by the influential twentieth-century philosopher of science Thomas Kuhn, who held that scientific ”truth” is determined not as much by facts as by the consensus of the scientific community. The influence of thought leaders, rewarding of grants, and scorn of dissenters are used to protect mainstream theory. Unfortunately, science only makes genuine progress when the mainstream theory is disproved, what Kuhn called a “paradigm shift.” Data which conflict with the mainstream paradigm are ignored instead of used to develop a better one. Like most people, scientists are ultimately motivated by financial security, career advancement, and the desire for admiration. Thus, nonscientific considerations impact scientific “truth.”

This corruption of a noble pursuit permits scientific hubris to prosper. It can only exist when scientists are less than dispassionate seekers of truth. Scientific hubris condones suppression of criticism, promotes unfounded speculation, and excuses rejection of conflicting data. Consequently, scientific hubris allows errors to persist indefinitely. However, science advances so slowly the public usually has no idea of how often it is wrong.

Reconstructing extinct organisms from fossils requires scientific hubris. The fewer the number of fossils available, the greater the hubris required for reconstruction. The original reconstruction of the peculiar organism Hallucigenia, which lived 505 million years ago, showed it upside down and backwards. This was easily corrected when more fossils were found and no harm was done.

In contrast, scientific hubris causes harm when bad science is used to influence behavior. The 17th century microscopist Nicholas Hartsoeker drew a complete human within the head of a sperm, speculating that this was what might be beneath the “skin” of a sperm. Belief in preformation, the notion that sperm and eggs contain complete humans, was common at the time. His drawing could easily have been used to demonstrate why every sperm is sacred and masturbation is a sin.

Scientific hubris has claimed many. many lives. In the mid 19th century, the medical establishment rejected Ignaz Semmelweis’ recommendation that physicians disinfect their hands prior to examining pregnant women despite his unequivocal demonstration that this practice slashed the death rate due to obstetric infections. Because of scientific hubris, “medicine has a dark history of opposing new ideas and those who proposed them.” It was only when the germ theory of disease was established two decades later that the body of evidence supporting Semmelweis’ work became impossible to ignore. The greatest harm caused by scientific hubris is that it slows progress towards the truth.

Record keeping of earth’s surface temperature began around 1880, so there is less than 150 years of quantitative data about climate, which evolves at a glacial pace. Common sense suggests that quantitative data covering multiple warming and cooling periods is necessary to give perspective about the evolution of climate. Only then will scientists be able to make an educated guess whether the 1.5 degrees Fahrenheit increase in earth’s temperature since 1930 is the beginning of sustained warming which will negatively impact civilization, or a transient blip.

The inconvenient truth is that science is in the data acquisition phase of climate study, which must be completed before there is any chance of predicting climate, if it is predictable [vide infra]. Hubris goads scientists into giving answers even when the data are insufficient.

To put our knowledge about climate in perspective, imagine an investor has the first two weeks of data on the performance of a new stock market. Will those data allow the investor to know where the stock market will be in twenty years? No, because the behavior of the many variables which determine the performance of a stock market is unpredictable. Currently, predicting climate is no different.

Scientists use data from proxies to estimate earth’s surface temperature when the real temperature is unknowable. In medicine, these substitutes are called “surrogate markers.” Because hospital laboratories are rigorously inspected and the reproducibility, accuracy, and precision of their data is verified, hospital laboratory practices provide a useful standard for evaluating the quality of any scientific data.

Surrogate markers must be validated by showing that they correlate with “gold standard” data before they are used clinically. Comparison of data from tree growth rings, a surrogate marker for earth’s surface temperature, with the actual temperature shows that correlation between the two is worsening for unknown reasons. Earth’s temperature is only one factor which determines tree growth. Because soil conditions, genetics, rainfall, competition for nutrients, disease, age, fire, atmospheric carbon dioxide concentrations and consumption by herbivores and insects affect tree growth, the correlation between growth rings and earth’s temperature is imperfect.

Currently, growth rings cannot be regarded as a valid surrogate marker for the temperature of earth’s surface. The cause of the divergence problem must be identified and somehow remedied, and the remedy validated before growth rings are a credible surrogate marker or used to validate other surrogate markers.

Data from ice cores, boreholes, corals, and lake and ocean sediments are also used as surrogate markers. These are said to correlate with each other. Surrogate marker data are interpreted as showing a warm period between c.950 and c. 1250, which is sometimes called the “Medieval Climate Optimum,” and a cooler period called the “Little Ice Age” between the 16th and 19th centuries. The data from these surrogate markers have not been validated by comparison with a quantitative standard. Therefore, they give qualitative, not quantitative data. In medical terms, qualitative data are considered to be only “suggestive” of a diagnosis, not diagnostic. This level of diagnostic certainty is typically used to justify further diagnostic testing, not definitive therapy.

Anthropogenic global warming is often presented as fact. According to the philosopher Sir Karl Popper, a single conflicting observation is sufficient to disprove a theory. For example, the theory that all swans are white is disproved by one black swan. Therefore, the goal of science is to disprove, not prove a theory. Popper described how science should be practiced, while Kuhn described how science is actually practiced. Few theories satisfy Popper’s criterion. They are highly esteemed and above controversy. These include relativity, quantum mechanics, and plate tectonics. These theories come as close to settled science as is possible.

Data conflict about anthropogenic global warming. Using data from ice cores and lake sediments, Professor Gernot Patzelt argues that over the last 10,000 years, 65% of the time earth’s temperature was warmer than today. If his data are correct, human deforestation and carbon emissions are not required for global warming and intervention to forestall it may be futile.

The definitive test of anthropogenic global warming would be to study a duplicate earth without humans. Realistically, the only way is develop a successful computer model. However, modeling climate may be impossible because climate is a chaotic system. Small changes in the initial state of a chaotic system can cause very different outcomes, making them unpredictable. This is commonly called the “butterfly effect” because of the possibility that an action as fleeting as the beating of a butterfly’s wings can affect distant weather. This phenomenon also limits the predictability of weather.

Between 1880 and 1920, increasing atmospheric carbon dioxide concentrations were not associated with global warming. These variables did correlate between 1920 and 1940 and from around 1970 to today. These associations may appear to be compelling evidence for global warming, but associations cannot prove cause and effect. One example of a misleading association was published in a paper entitled “The prediction of lung cancer in Australia 1939–1981.” According to this paper, “Lung cancer is shown to be predicted from petrol consumption figures for a period of 42 years. The mean time for the disease to develop is discussed and the difference in the mortality rate for male and females is explained.” Obviously, gasoline use does not cause lung cancer.

The idea that an association is due to cause and effect is so attractive that these claims continue to be published. Recently, an implausible association between watching television and chronic inflammation was reported. In their book Follies and Fallacies in Medicine, Skrabanek and McCormick wrote, “As a result of failing to make this distinction [between association and cause], learning from experience may lead to nothing more than learning to make the same mistakes with increasing confidence.” Failure to learn from mistakes is another manifestation of scientific hubris. Those who are old enough to remember the late 1970’s may recall predictions of a global cooling crisis based on transient glacial growth and slight global cooling.

The current situation regarding climate change is similar to that confronting cavemen when facing winter and progressively shorter days. Every day there was less time to hunt and gather food and more cold, useless darkness. Shamans must have desperately called for ever harsher sacrifices to stop what otherwise seemed inevitable. Only when science enabled man to predict the return of longer days was sacrifice no longer necessary.

The mainstream position about anthropogenic global warming is established. The endorsement of the United Nations, U.S. governmental agencies, politicians, and the media buttresses this position. This nonscientific input has contributed to the perception that anthropogenic global warming is settled science. A critical evaluation of the available data about global warming, and anthropogenic global warming in particular, allow only a guess about the future climate. It is scientific hubris not to recognize that guess for what it is.

Grazing, desertification and climate change

“There is only one option, I’ll repeat to you, only one option left to climatologists and scientists, and that is to do the unthinkable, and to use livestock, bunched and moving, as a proxy for former herds and predators, and mimic nature. There is no other alternative left to mankind.”  –Allan Savory

Reblogged from Euan Mearns’ Energy Matters:

Posted on by Euan Mearns

Open thread…..

Yesterday I watched the GWPF cliff diving walrus porn video. Afterwards, Youtube took me to this video by Allan Savory. Noting that it had over 3 million views, my blood pressure rose in view of how environmental bullshit attracts so much attention. I started to watch and was then astonished by what Allan Savory had to say.

His core message runs totally counter to conventional wisdom. Savory of course has his detractors including George Monbiot – so this should provide enough encouragement for Energy Matters’ audience to watch and to listen.

TED provide a transcript of the video.

This is an open thread where I would welcome informed opinion on Allan Savory’s proposal.

The Sierra Club have a critical review: Allan Savory’s Holistic Management Theory Falls Short on Science.

Our Urban “Climate Crisis”

Reblogged from Watts Up With That:

By Jim Steele

Published in Pacifica Tribune May 14, 2019

What’s Natural

Our Urban “Climate Crisis”

clip_image002

Based on a globally averaged statistic, some scientists and several politicians claim we are facing a climate crisis. Although it’s wise to think globally, organisms are never affected by global averages. Never! Organisms only respond to local conditions. Always! Given that weather stations around the globe only record local conditions, it is important to understand over one third of the earth’s weather stations report a cooling trend (i.e. Fig 4 below ) Cooling trends have various local and regional causes, but clearly, areas with cooling trends are not facing a “warming climate crisis”. Unfortunately, by averaging cooling and warming trends, the local factors affecting varied trends have been obscured.

It is well known as human populations grow, landscapes lose increasing amounts of natural vegetation, experience a loss of soil moisture and are increasingly covered by heat absorbing pavement and structures. All those factors raise temperatures so that a city’s downtown area can be 10°F higher than nearby rural areas. Despite urban areas representing less than 3% of the USA’s land surface, 82% of our weather stations are located in urbanized areas. This prompts critical thinkers to ask, “have warmer urbanized landscapes biased the globally averaged temperature?” (Arctic warming also biases the global average, but that dynamic must await a future article.)

clip_image004

Satellite data reveal that in forested areas the maximum surface temperatures are 36°F cooler than in grassy areas, and grassy areas’ maximum surface temperatures can be 36°F cooler than the unvegetated surfaces of deserts and cities. To appreciate the warming effects of altered landscapes, walk barefoot across a cool grassy lawn on a warm sunny day and then step onto a burning asphalt roadway.

In natural areas like Yosemite National Park, maximum air temperatures are cooler now than during the 1930s. In less densely populated and more heavily forested California, maximum air temperatures across the northern two thirds of the state have not exceeded temperatures of the 1930s. In contrast, recently urbanized communities in China report rapid warming of 3°F to 9°F in just 10 years, associated with the loss of vegetation.

clip_image006

Although altered urban landscapes undeniably raise local temperatures, some climate researchers suggest warmer urban temperatures do not bias the globally averaged warming trend. They argue warming trends in rural areas are similar to urbanized areas. So, they theorize a warmer global temperature is simply the result of a stronger greenhouse effect. However, such studies failed to analyze how changes in vegetation and wetness can similarly raise temperatures in both rural and urban areas. For example, researchers reported overgrazing had raised grassland temperatures 7°F higher compared to grassland that had not been grazed. Heat from asphalt will increase temperatures at rural weather stations just as readily as urban stations.

To truly determine the effects of climate change on natural habitats requires observing trends from tree ring data obtained from mostly pristine landscapes. Instrumental data are overwhelmingly measured in disturbed urbanized areas. Thus, the difference between instrumental and tree ring temperature trends can illustrate to what degree landscapes changes have biased natural temperature trends. And those trends are strikingly different!

The latest reconstructions of summer temperature trends from the best tree ring data suggest the warmest 30-year period happened between 1927 and 1956. After 1956, tree rings recorded a period of cooling that lowered global temperatures by over 1°F. In contrast, although tree rings and instrumental temperatures agreed up to 1950, the instrumental temperature trend, as presented in NASA graphs, suggests a temperature plateau from 1950 to 1970 and little or no cooling. So, are these contrasting trends the result of an increased urban warming effect offsetting natural cooling?

clip_image008

After decades of cooling, tree ring data recorded a global warming trend but with temperatures just now reaching a warmth that approaches the 1930s and 40s. In contrast, instrumental data suggests global temperatures have risen by more than 1°F above the 1940s. Some suggest tree rings have suddenly become insensitive to recent warmth? But the different warming trends are again better explained by a growing loss of vegetation and increasing areas covered by asphalt affecting temperatures measured by thermometers compared with temperatures determined from tree ring data in natural habitats.

Humans are increasingly inhabiting urban environments with 66% of humans projected to inhabit urban areas by 2030. High population densities typically reduce cooling vegetation, reduce wetlands and soil moisture, and increase landscape areas covered by heat retaining pavements. Thus, we should expect trends biased from urbanized landscapes to continue to rise. But there is a real solution to this “urban climate crisis.” It requires increasing vegetation, creating more parks and greenbelts, restoring wetlands and streams, and reducing heat absorbing pavements and roofs. Reducing CO2 concentrations will not reduce stifling urban temperatures.

Jim Steele is the retired director of San Francisco State University’s Sierra Nevada Field Campus and authored Landscapes and Cycles: An Environmentalist’s Journey to Climate Skepticism.

Half of 21st Century Warming Due to El Nino

Reblogged from Dr.RoySpencer.com  [HiFast bold]

May 13th, 2019 by Roy W. Spencer, Ph. D.

A major uncertainty in figuring out how much of recent warming has been human-caused is knowing how much nature has caused. The IPCC is quite sure that nature is responsible for less than half of the warming since the mid-1900s, but politicians, activists, and various green energy pundits go even further, behaving as if warming is 100% human-caused.

The fact is we really don’t understand the causes of natural climate change on the time scale of an individual lifetime, although theories abound. For example, there is plenty of evidence that the Little Ice Age was real, and so some of the warming over the last 150 years (especially prior to 1940) was natural — but how much?

The answer makes as huge difference to energy policy. If global warming is only 50% as large as is predicted by the IPCC (which would make it only 20% of the problem portrayed by the media and politicians), then the immense cost of renewable energy can be avoided until we have new cost-competitive energy technologies.

The recently published paper Recent Global Warming as Confirmed by AIRS used 15 years of infrared satellite data to obtain a rather strong global surface warming trend of +0.24 C/decade. Objections have been made to that study by me (e.g. here) and others, not the least of which is the fact that the 2003-2017 period addressed had a record warm El Nino near the end (2015-16), which means the computed warming trend over that period is not entirely human-caused warming.

If we look at the warming over the 19-year period 2000-2018, we see the record El Nino event during 2015-16 (all monthly anomalies are relative to the 2001-2017 average seasonal cycle):

21st-century-warming-2000-2018-550x733
Fig. 1. 21st Century global-average temperature trends (top) averaged across all CMIP5 climate models (gray), HadCRUT4 observations (green), and UAH tropospheric temperature (purple). The Multivariate ENSO Index (MEI, bottom) shows the upward trend in El Nino activity over the same period, which causes a natural enhancement of the observed warming trend.

We also see that the average of all of the CMIP5 models’ surface temperature trend projections (in which natural variability in the many models is averaged out) has a warmer trend than the observations, despite the trend-enhancing effect of the 2015-16 El Nino event.

So, how much of an influence did that warm event have on the computed trends? The simplest way to address that is to use only the data before that event. To be somewhat objective about it, we can take the period over which there is no trend in El Nino (and La Nina) activity, which happens to be 2000 through June, 2015 (15.5 years):

21st-century-warming-2000-2015.5-550x733
Fig. 2. As in Fig. 1, but for the 15.5 year period 2000 to June 2015, which is the period over which there was no trend in El Nino and La Nina activity.

Note that the observed trend in HadCRUT4 surface temperatures is nearly cut in half compared to the CMIP5 model average warming over the same period, and the UAH tropospheric temperature trend is almost zero.

One might wonder why the UAH LT trend is so low for this period, even though in Fig. 1 it is not that far below the surface temperature observations (+0.12 C/decade versus +0.16 C/decade for the full period through 2018). So, I examined the RSS version of LT for 2000 through June 2015, which had a +0.10 C/decade trend. For a more apples-to-apples comparison, the CMIP5 surface-to-500 hPa layer average temperature averaged across all models is +0.20 C/decade, so even RSS LT (which usually has a warmer trend than UAH LT) has only one-half the warming trend as the average CMIP5 model during this period.

So, once again, we see that the observed rate of warming — when we ignore the natural fluctuations in the climate system (which, along with severe weather events dominate “climate change” news) — is only about one-half of that projected by climate models at this point in the 21st Century. This fraction is consistent with the global energy budget study of Lewis & Curry (2018) which analyzed 100 years of global temperatures and ocean heat content changes, and also found that the climate system is only about 1/2 as sensitive to increasing CO2 as climate models assume.

It will be interesting to see if the new climate model assessment (CMIP6) produces warming more in line with the observations. From what I have heard so far, this appears unlikely. If history is any guide, this means the observations will continue to need adjustments to fit the models, rather than the other way around.