Dilbert Creator, Scott Adams: ‘The hockey stick is literally a symbol of lying’

Reblogged from Watts Up With That:

That’s direct quote from Scott Adams in this video he posted yesterday. Well worth your time.

In this video, ‘Dilbert’ creator Scott Adams solves the climate debate and saves the world (really).

Watch:

https://www.pscp.tv/ScottAdamsSays/1gqGvnVYBYBGB

h/t to Joe Born

Advertisements

Cold outbreaks are not caused by global warming

Reblogged from Watts Up With That:

Global cooling – and global totalitarian socialism – are the catastrophes we should fear most

Dr. Jay Lehr and Tom Harris

What do heat waves, floods, droughts, rising sea levels, forest fires, hurricanes, African wars, mass extinctions, disease outbreaks, and human and animal migrations from South America and the Middle East have in common?

According to climate activists, they are all caused by dangerous man-made global warming. And this, in turn, is supposedly caused by rising carbon dioxide (CO2) levels resulting from our use of fossil fuels.

They might as well add alien invasions to the list, because it is all nonsense. Indeed, the climate scare industry has achieved such a level of absurdity that, on February 1, journalist Andrew Revkin reported in a National Geographic article that, “Many stories in recent days highlighted studies concluding that global warming is boosting the odds of cold [weather] outbreaks.”

(As we delve into the realm of absurdity, however, let us not forget that, in 2011, scientists from NASA’s Planetary Science Division and Michael Mann’s Penn State University actually presented a report speculating that extraterrestrial environmentalists could be so appalled by our planet-polluting, climate-changing ways that they could view humans as a threat to the entire intergalactic ecosystem and decide to destroy humanity!)

Among the most absurd of recent climate alarm statements is the one attributing recent cold spells to manmade global warming came from University of Michigan professor emeritus of environment and sustainability Donald Scavia, who said: “In the past there was a very strong gradient of cold air at the poles and warmer air south of the poles. That gradient kept the cold where it is…. As the poles are warming faster than the rest of the planet, that gradient weakens, allowing the cold air currents to dip south.”

Dr. Tim Ball, an environmental consultant and former climatology professor at the University of Winnipeg in Manitoba, said that Scavia’s statement “is utter rubbish.” Ball explained, “It’s wrong in every aspect, from the basic assumption to the interpretation. In fact, a gradient makes things move. It doesn’t ‘keep the cold where it is.’”

It’s also a mistake to think that, if human-produced CO2 is actually causing global warming, the poles will warm first. “There is no evidence of that; they just are assuming it to be the case,” Dr. Ball emphasized.

And, if the poles did warm first, Ball explained, the reduced temperature difference between the poles and lower latitude regions would reduce extreme weather events, not intensify them, as climate campaigners claim. After all, weather and extreme weather events are driven by the temperature gradient between latitudes. A warming Arctic would result in less intense cold outbreaks and a lesser intrusion of cold artic air colliding with warm moist air in warmer regions. Climate alarmists have their science backwards.

Ball noted that the real cause of the severe cold outbreaks in the United States is a wavy Jet Stream.

The Jet Stream is a thin band of strong winds that flow rapidly around the planet from west to east at approximately 10 km altitude. The Jet Stream divides warm air masses, typically found at low latitudes towards the tropics, from cold air masses, usually found at high latitudes near the poles.

However, a very wavy jet stream, as we are experiencing now (and have many times in the past), allows frigid Arctic air to move south to normally warmer latitudes and warm tropical air to push into Polar latitudes. The result is an increase in extreme weather events, including the cold outbreaks in the USA. It has nothing to do with global warming. In fact, the most common cause of a wavy Jet Stream is global cooling. History shows that severe weather increases with a cooling world, not a warming one.

As to fears of more cold outbreaks due to global warming, Ball laughed, “They’re making it all up!”

Clearly, there is no end to the deceptions that the climate lobby will tell the public in order to deprive the world of reliable, inexpensive fossil fuel-based energy, the foundation of modern living standards. Perhaps the greatest deception of all is what real scientists call cherry picking – highlighting data that advance their theory and agenda, while ignoring data that do not support their politics.

The graph below explains how they do it. The overall trend of the data is obvious: as variable “A” declines, variable “B” increases. But if you choose only a small portion of the data (or just a few years out of 100 or 1,000), you can declare the trend to be anything you want – including having “A” stay the same as “B” increases, and even having “A” increase as “B” increases.

clip_image002

This is the sleight-of-hand used by global warming alarmists who want the public to believe that burning fossil fuels and increasing the atmosphere’s carbon dioxide must be stopped at all costs. They want to run the nation and the world on expensive, inconvenient, unreliable wind and solar energy. They ignore the fact that those energy must be totally backed up by dependable energy sources like fossil fuel or nuclear in order to stop the grid from collapsing. It has been calculated that, were the Midwest to be dependent only on wind and solar power, at least one million people would have died of hypothermia during the recent minus-50 degrees F cold spell.

As demonstrated by Climate Change Reconsidered II: Fossil Fuels, the latest report of the Nongovernmental International Panel on Climate Change, the impact of fossil fuels (coal, oil and natural gas) has been overwhelmingly positive. The report’s Summary for Policymakers states:

“Fossil fuels have benefited humanity by making possible the prosperity that occurred since the first Industrial Revolution…. Fossil fuels also power the technologies that reduce the environmental impact of a growing human population, saving space for wildlife…. Nearly all the impacts of fossil fuel use on human well-being are net positive (benefits minus costs), near zero (no net benefit or cost), or are simply unknown.”

Besides raising living standards across the world, fossil fuel use has helped elevate CO2 in our atmosphere from a level dangerously close to the point at which plants start to die – to where we are today, with the Earth once again “greening,” as crops, forests and grasslands grow faster and better.

The global warming scare has never been about science, or even climate for that matter. The long-term goal of many activists is to unite the world under a single socialistic government in which there is no capitalism, no democracy and no freedom. After all, personal freedom is fueled largely by access to affordable energy.

An intermediate goal of climate alarmism is thus to limit the amount of energy that is available and place it under tight government control. Inexpensive fossil fuels remain an obstacle to their vision, and so must be done away with entirely, climate campaigners maintain. We must not let them succeed.

Dr. Jay Lehr is the Science Director of The Heartland Institute which is based in Arlington Heights, Illinois. Tom Harris is Executive Director of the Ottawa-based International Climate Science Coalition.

Human Activity in China and India Dominates the Greening of Earth, NASA Study Shows

From NASA Ames:
BLUF: “Once people realize there’s a problem, they tend to fix it…In the 70s and 80s in India and China, the situation around vegetation loss wasn’t good; in the 90s, people realized it; and today things have improved. Humans are incredibly resilient. That’s what we see in the satellite data.” –Rama Nemani, NASA’s Ames Research Center

Human Activity in China and India Dominates the Greening of Earth, NASA Study Shows

Feb. 11, 2019
A map showing increases in leaf area per year, represented in green. India and China stand out with large areas of dark green.
Over the last two decades, the Earth has seen an increase in foliage around the planet, measured in average leaf area per year on plants and trees. Data from NASA satellites shows that China and India are leading the increase in greening on land. The effect stems mainly from ambitious tree planting programs in China and intensive agriculture in both countries.
Credits: NASA Earth Observatory

The world is literally a greener place than it was 20 years ago, and data from NASA satellites has revealed a counterintuitive source for much of this new foliage: China and India. A new study shows that the two emerging countries with the world’s biggest populations are leading the increase in greening on land. The effect stems mainly from ambitious tree planting programs in China and intensive agriculture in both countries.

The greening phenomenon was first detected using satellite data in the mid-1990s by Ranga Myneni of Boston University and colleagues, but they did not know whether human activity was one of its chief, direct causes. This new insight was made possible by a nearly 20-year-long data record from a NASA instrument orbiting the Earth on two satellites. It’s called the Moderate Resolution Imaging Spectroradiometer, or MODIS, and its high-resolution data provides very accurate information, helping researchers work out details of what’s happening with Earth’s vegetation, down to the level of 500 meters, or about 1,600 feet, on the ground.

A world map showing the trend in annual average leaf area, in percent per decade (2000-2017)
The world is a greener place than it was 20 years ago, as shown on this map, where areas with the greatest increase in foliage are indicated in dark green. Data from a NASA instrument orbiting Earth aboard two satellites show that human activity in China and India dominate this greening of the planet.
Credits: NASA Earth Observatory

Taken all together, the greening of the planet over the last two decades represents an increase in leaf area on plants and trees equivalent to the area covered by all the Amazon rainforests. There are now more than two million square miles of extra green leaf area per year, compared to the early 2000s – a 5% increase.

“China and India account for one-third of the greening, but contain only 9% of the planet’s land area covered in vegetation – a surprising finding, considering the general notion of land degradation in populous countries from overexploitation,” said Chi Chen of the Department of Earth and Environment at Boston University, in Massachusetts, and lead author of the study.

An advantage of the MODIS satellite sensor is the intensive coverage it provides, both in space and time: MODIS has captured as many as four shots of every place on Earth, every day for the last 20 years.

“This long-term data lets us dig deeper,” said Rama Nemani, a research scientist at NASA’s Ames Research Center, in California’s Silicon Valley, and a co-author of the new work. “When the greening of the Earth was first observed, we thought it was due to a warmer, wetter climate and fertilization from the added carbon dioxide in the atmosphere, leading to more leaf growth in northern forests, for instance. Now, with the MODIS data that lets us understand the phenomenon at really small scales, we see that humans are also contributing.”

China’s outsized contribution to the global greening trend comes in large part (42%) from programs to conserve and expand forests. These were developed in an effort to reduce the effects of soil erosion, air pollution and climate change. Another 32% there – and 82% of the greening seen in India – comes from intensive cultivation of food crops.

Land area used to grow crops is comparable in China and India – more than 770,000 square miles – and has not changed much since the early 2000s. Yet these regions have greatly increased both their annual total green leaf area and their food production. This was achieved through multiple cropping practices, where a field is replanted to produce another harvest several times a year. Production of grains, vegetables, fruits and more have increased by about 35-40% since 2000 to feed their large populations.

How the greening trend may change in the future depends on numerous factors, both on a global scale and the local human level. For example, increased food production in India is facilitated by groundwater irrigation. If the groundwater is depleted, this trend may change.

“But, now that we know direct human influence is a key driver of the greening Earth, we need to factor this into our climate models,” Nemani said. “This will help scientists make better predictions about the behavior of different Earth systems, which will help countries make better decisions about how and when to take action.”

The researchers point out that the gain in greenness seen around the world and dominated by India and China does not offset the damage from loss of natural vegetation in tropical regions, such as Brazil and Indonesia. The consequences for sustainability and biodiversity in those ecosystems remain.

Overall, Nemani sees a positive message in the new findings. “Once people realize there’s a problem, they tend to fix it,” he said. “In the 70s and 80s in India and China, the situation around vegetation loss wasn’t good; in the 90s, people realized it; and today things have improved. Humans are incredibly resilient. That’s what we see in the satellite data.”

This research was published online, Feb. 11, 2019, in the journal Nature Sustainability.

Bar chart showing that China and India are leading the increase in greening of the planet, due to human activity
Credits: NASA Earth Observatory

For news media:

Members of the news media interested in covering this topic should get in touch with the science representative on the NASA Ames media contacts page.

Author: Abby Tabor, NASA’s Ames Research Center, Silicon Valley

Last Updated: Feb. 11, 2019
Editor: Abigail Tabor

Snow: Higher and Higher

Note on the chart:  The time series average and range between ±1 standard deviation (calculated for 1998/99 to 2011/12) shows how current conditions compare to historical variability.

Note 2:  Here’s the link to the Environment and Climate Change Canada site (they just had to throw in Climate Change): https://www.ccin.ca/ccw/snow/current

sunshine hours

March 2000: According to Dr David Viner, a senior research scientist at the climatic research unit (CRU) of the University of East Anglia,within a few years winter snowfall will become “a very rare and exciting event”.

“Children just aren’t going to know what snow is,” he said.

Snow seems to be ignoring David Viner.

View original post

Hurricanes & climate change: detection

Climate Etc.

by Judith Curry

I am preparing a new Special Report on Hurricanes and Climate Change.

View original post 3,125 more words

The AMO and Temperature

sunshine hours

My Swedish is poor. But the graph is clear. Spitsbergen temperatures are in synch with the AMO. Some translated text below graph. (Thanks)

Grafen viser temperatursvinginger tilbake til slutten av 1800-tallet. Foto: Skjermdump

Contributing to making this part of the report a worrying reading is that the natural climate variations are not included in the used climate models. This is depressing, as it is well known that the air temperature around Svalbard is clearly influenced by the AMO (Atlantic Multidecadal Oscillation), which is a natural and periodic variation. This impact is actually mentioned in the report, and this realization ought to have been exploited.

Both the AMO and the air temperature in Longyearbyen have largely covaried since 1898 (see figure). The natural climate variations are thus far from unimportant, and explain better than all CO2-controlled climate models what actually takes place here in Longyearbyen.

AMO is known from measurements since 1856, and geological surveys show that AMO…

View original post 79 more words

Influence of solar activity on European rainfall

Reblogged from Watts Up With That:

Press Release

Institute of Hydrography, Geoecology and Climate Sciences (IFHGK), www.ifhgk.org

15th February 2019

Influence of solar activity on European rainfall

A balanced level of precipitation provides the basis for a wide range of economic and social activities in Europe. Particularly agriculture, drinking water supply and inland waterway transport are directly affected. However, the amount of rain fluctuates strongly from year to year. While it may pour torrentially in one year, rain may remain absent for weeks in another year. The population is used to this variability and knows how to deal with it.

The chance discovery by an agricultural scientist from Münster, Germany, now suggests that in certain months rain over Germany and other parts of Europe follows a pattern that up to now has remained undetected. As part of agricultural consultation, Ludger Laurenz analyzed decades of rainfall records of his home weather station in Münster and noticed a constant up and down that followed an 11-year rhythm – especially in February. After detailed examination it was clear that this rhythm correlated closely with the activity of the sun: the well-documented 11-year sunspot cycle.

Laurenz next teamed up with two colleagues to examine the extent to which the observed pattern from Münster is reproducible in other parts of Germany and Europe, and whether the phenomenon also exists for the other months of the year. Horst-Joachim Lüdecke from the HTW University of Applied Sciences in Saarland gathered the precipitation data collected in Europe since the beginning of the 20th century. The physicist emeritus then developed a computer algorithm to determine the similarity of changes in rainfall and solar activity. All 39 European countries and every one of the 12 months of the year were quantified over a total of 115 years using mathematical correlations.

In order to include possible delay effects, the data series of rain and sunspots were systematically checked for shifts. For this purpose, the time series were gradually shifted in time against each other like combs and the respective change of the correlation quality was noted. The multidimensional data obtained in this way were evaluated for systematic trends by geoscientist Sebastian Lüning and visualized cartographically. Lüning is associated with the Swiss Institute of Hydrography, Geoecology and Climate Sciences (IFHGK) and is specialized in the research of solar climate effects.

The mapped out results show that the link between February precipitation and solar activity originally discovered in Münster is valid for large parts of Central and Northern Europe and has good statistical significance there. Towards southern Europe, however, the correlation weakens significantly.

The statistical investigation was also able to demonstrate systematic phase shifts across the continent. In Germany and neighboring countries, February precipitation was particularly low when the sun was very strong four years earlier. The delay seems to be due to the slow deep circulation of the Atlantic, as earlier work had already suggested. On the basis of the statistically-empirically determined correlation, February 2018 in Germany with particularly low precipitation can now also be explained, which followed a particularly high intensity peak of solar activity at the beginning of 2014.

Similar relationships between rainfall and solar activity have been observed in other months, although somewhat weaker, especially in April, June and July, which account for a large part of the vegetation period in Central Europe. The result was a complex interplay of sun and rain in Europe, which showed clear trends over 1000 km and varied strongly from month to month.

The study thus confirms the concept of a solar participation in the European hydroclimatic development, which had already been indicated by a whole series of local case studies of other authors. The exact mechanism by which the solar signal influences precipitation is still largely unclear and requires further research.

The solar precipitation effect now mapped out across Europe for the first time opens up new possibilities for improved medium-term precipitation forecasts. Agriculture in particular, but also protection measures against extreme weather damage in connection with heavy rainfall and droughts could benefit from this. The next step in refining the forecasting methodology is a more precise quantification of the effects of Atlantic Ocean cycles, which also play an important role in rainfall, especially in Western Europe.

Original publication:

Laurenz, L., H.-J. Lüdecke, S. Lüning (2019): Influence of solar activity on European rainfall. J. Atmospheric and Solar-Terrestrial Physics, 185: 29-42, doi: 10.1016/j.jastp.2019.01.012

The pdf version can be downloaded free of charge at the following link until early March: https://authors.elsevier.com/a/1YXWZ4sIlkiVhv

Taking down the latest Washington Post Antarctic scare story on 6x increased ice melt

Reblogged from Watts Up With That:

Ice loss from Antarctica has sextupled since the 1970s, new research finds
An alarming study shows massive East Antarctic ice sheet already is a significant contributor to sea-level rise

Chris Mooney and Brady Dennis

January 14 at 3:00 PM (Washington Post)

Antarctic glaciers have been melting at an accelerating pace over the past four decades thanks to an influx of warm ocean water — a startling new finding that researchers say could mean sea levels are poised to rise more quickly than predicted in coming decades.

The Antarctic lost 40 billion tons of melting ice to the ocean each year from 1979 to 1989. That figure rose to 252 billion tons lost per year beginning in 2009, according to a study published Monday in the Proceedings of the National Academy of Sciences. That means the region is losing six times as much ice as it was four decades ago, an unprecedented pace in the era of modern measurements. (It takes about 360 billion tons of ice to produce one millimeter of global sea-level rise.)

“I don’t want to be alarmist,” said Eric Rignot, an Earth-systems scientist for the University of California at Irvine and NASA who led the work. But he said the weaknesses that researchers have detected in East Antarctica — home to the largest ice sheet on the planet — deserve deeper study.

“The places undergoing changes in Antarctica are not limited to just a couple places,” Rignot said. “They seem to be more extensive than what we thought. That, to me, seems to be reason for concern.”

The findings are the latest sign that the world could face catastrophic consequences if climate change continues unabated. In addition to more-frequent droughts, heat waves, severe storms and other extreme weather that could come with a continually warming Earth, scientists already have predicted that seas could rise nearly three feet globally by 2100 if the world does not sharply decrease its carbon output. But in recent years, there has been growing concern that the Antarctic could push that even higher.

That kind of sea-level rise would result in the inundation of island communities around the globe, devastating wildlife habitats and threatening drinking-water supplies. Global sea levels have already risen seven to eight inches since 1900.

The full drivel here


Why do I call it “drivel”? Three reasons:

1. Anything Chris Mooney writes about climate is automatically in that category, because he can’t separate his fear of doom from his writing.

2. The math doesn’t work in the context of the subheadline. Alarming? Read on.

3. Data back to 1972…where?

First, let’s get some data. Wikipedia, while biased towards alarmism in this reference, at least has the basic data.

https://en.wikipedia.org/wiki/Antarctic_ice_sheet

It covers an area of almost 14 million square kilometres (5.4 million square miles) and contains 26.5 million cubic kilometres (6,400,000 cubic miles) of ice.[2]A cubic kilometer of ice weighs approximately one metric gigaton, meaning that the ice sheet weighs 26,500,000 gigatons.

Now for the math.  

So, if the Antarctic ice sheet weighs 26,500,000 gigatonnes or 26500000000000000 tonnes

252 billion tonnes is 252 gigatonnes

Really simple math says:  252gt/26,500,000gt x 100 = 9.509433962264151e-4 or 0.00095% change per year

But this is such a tiny loss in comparison to the total mass of the ice sheet, it’s microscopic…statistically insignificant.

In the email thread that preceded this story (h/t to Marc Morano) I asked people to check my work. Willis Eschenbach responded, corrected an extra zero, and pointed this out:

Thanks, Anthony. One small issue. You’ve got an extra zero in your percentage, should be 0.00095% per year loss.

Which means that the last ice will melt in the year 3079 …

I would also note that 250 billion tonnes of ice is 250 billion cubic meters. Spread out over the ocean, that adds about 0.7 mm/year to the sea level … that’s about 3 inches (7 cm) per century.

As you said … microscopic.

w.

Paul Homewood noted in the email thread:

Ice losses from Antarctica have tripled since 2012, increasing global sea levels by 0.12 inch (3 millimeters) in that timeframe alone, according to a major new international climate assessment funded by NASA and ESA (European Space Agency).

https://climate.nasa.gov/news/2749/ramp-up-in-antarctic-ice-loss-speeds-sea-level-rise/

0.5mm per year.

Not a lot to worry about.

“They attribute the threefold increase in ice loss from the continent since 2012 to a combination of increased rates of ice melt in West Antarctica and the Antarctic Peninsula, and reduced growth of the East Antarctic ice sheet.”

Translation: The volcano riddled West/Peninsula is melting bit more and the Eastern Sheet is growing a little less than usual.

Paul Homewood adds on his website:

Firstly, according to NASA’s own press release, the study only looks at data since 1992. The Mail’s headline (Taken from the Washington Post – Anthony) that “Antarctica is losing SIX TIMES more ice a year than it was in the 1970s “ is totally fake, as there is no data for the 1970s. Any estimates of ice loss in the 1970s and 80s are pure guesswork, and have never been part of this NASA IMBIE study, or previous ones.

image

Secondly, the period since 1992 is a ridiculously short period on which to base any meaningful conclusions at all. Changes over the period may well be due to natural, short term fluctuations, for instance ocean cycles. We know, as the NASA study states, that ice loss in West Antarctica is mainly due to the inflow of warmer seas.

The eruption of Pinatubo in 1991 is another factor. Global temperatures fell during the next five years, and may well have slowed down ice melt.

Either way, Pinkstone’s claim that the ice loss is due to global warming is fake. It is a change in ocean current that is responsible, and nothing to do with global warming.

Then there is his pathetic claim that “Antarctica is shedding ice at a staggering rate”. Alarmist scientists, and gullible reporters, love to quote impressive sounding numbers, like 252 gigatons a year. In fact, as NASA point out, the effect on sea level rise since 1992 is a mere 7.6mm, equivalent to 30mm/century.

Given that global sea levels have risen no faster since 1992 than they did in the mid 20thC, there is no evidence that Antarctica is losing ice any faster than then. To call it staggering is infantile.

NASA also reckon that ice losses from Antarctica between 2012 and 2017 increased sea levels by 3mm, equivalent to 60mm/century. Again hardly a scary figure. But again we must be very careful about drawing conclusions from such a short period of time. Since 2012, we have had a record 2-year long El Nino. What effect has this had?

But back to that previous NASA study, carried out by Jay Zwally in 2015, which found:

A new NASA study says that an increase in Antarctic snow accumulation that began 10,000 years ago is currently adding enough ice to the continent to outweigh the increased losses from its thinning glaciers.

The research challenges the conclusions of other studies, including the Intergovernmental Panel on Climate Change’s (IPCC) 2013 report, which says that Antarctica is overall losing land ice.

According to the new analysis of satellite data, the Antarctic ice sheet showed a net gain of 112 billion tons of ice a year from 1992 to 2001. That net gain slowed   to 82 billion tons of ice per year between 2003 and 2008.

https://www.nasa.gov/feature/goddard/nasa-study-mass-gains-of-antarctic-ice-sheet-greater-than-losses 

Far from losing ice, as the new study thinks, Zwally’s 2015 analysis found the opposite, that the ice sheet was growing.

OK, Zwally’s data only went up to 2008, but there are still huge differences. Whereas Zwally estimates ice gain of between 82 and 112 billion tonnes a year between 1992 and 2008, the new effort guesses at a loss of 83 billion tonnes a year.

It is worth pointing out that Zwally’s comment about the IPCC 2013 report refers to the 2012 IMBIE report, which was the forerunner to the new study, the 2018 IMBIE.

Quite simply, nobody has the faintest idea whether the ice cap is growing or shrinking, never mind by how much, as the error margins and uncertainties are so huge.

The best guide to such matters comes from tide gauges around the world. And these continue to show that sea levels are rising no faster then mid 20thC, and at a rate of around 8 inches per century.

Disentangling California Drought

Reblogged from Watts Up With That:

Here is Jim Steele’s newest column article for the Tribune and 5 other Marin papers,~ctm

Pacifica Tribune column, January 16, 2019

What’s Natural?

Disentangling California Drought

clip_image001

Devastating droughts are a great concern. Droughts disrupt ecosystems, agriculture, and drinking water supplies. Contrary to headlines suggesting we have only 12 years before descending into climate hell with more severe droughts, historically, Californians are not experiencing more severe droughts. Despite low stream flows and withering plants, there’s no agreement on how to best define drought. Different methods suggest different severities for the same drought. Thus, the Intergovernmental Panel on Climate Change’s recent assessment, downgraded their ability to detect the causes of drought to “low confidence”.

Ocean circulation determines how much rain reaches the land. Each summer, California naturally experiences months of drought because storms carrying ocean moisture are blocked. Every few years, a rainy El Niño year alternates with drought producing La Niñas. But 20 years of more frequent La Niñas can cause 20 years of drought. To address natural precipitation shifts, California constructed ~1400 dams, storing water during wet years that can be released during drought years. Yosemite’s Hetch Hetchy reservoir supplies about 25% of San Francisco’s drinking water and 17% of its electricity. Misguided attempts to remove its dam would be disastrous for humans with scant environmental benefits.

NOAA scientists analyzed California’s 2011-2014 drought concluding it was dominated by a La Niña and natural variability. In contrast, their models suggested any greenhouse contribution was “very small”. Similarly, drought-sensitive tree rings suggested the extremely low precipitation was not unprecedented nor “outside the range of natural variability”. For 1200 years, extremely low rainfall happens a few times every century.

However, because higher temperatures can theoretically increase evaporation and dry the land, some researchers define drought by calculating the Palmer Drought Severity Index (PDSI). Despite using the same tree rings, the PDSI transformed a natural California drought into the worst in 1200 years, evoking global warming fears.

What to trust?

Most scientists agree the PDSI is biased towards worse droughts, because it assumes higher temperatures always dry the land. However, the opposite is also true! Without moisture to absorb heat, drier conditions produce higher temperatures. Studies using more accurate measurements than the PDSI find no increase in global droughts.

Before significant CO2 warming was possible, Dust Bowl years from 1928-1939 and the 1950s drought were the most severe 20th century American droughts. La Niña-like ocean temperatures blocked rain storms and triggered the Dust Bowl while plowing up native grasses made it worse. More concerning is 2 century-long megadroughts between 900 AD and 1400 AD. Trying to survive increasing dryness Native Americans created dams and irrigation canals. But those droughts finally led to the demise of once thriving Pueblo Cultures such as Mesa Verde.

Will our modern water infrastructure protect us if drought history repeats?

Reducing our carbon foot print or whacky plans to shade the earth from the sun to lower global temperatures will have no effect. Lower temperatures may in fact increase major droughts. Droughts during the 1750s, 1820s, and 1850s-1860s were similar to the 1950s. During the cool 1500s, the southwestern United States and Mexico suffered decades long droughts of “epic proportions”.

Coincident with the Pueblo Culture’s demise, drought is detected in sediments of San Francisco Bay. Droughts reduce stream flows that normally flush the bay, allowing salty ocean water to encroach deeper into the Bay’s delta. Past droughts caused the Bay’s Suisun Marsh to become 40% saltier. Suisun Marsh is now considered the only sustainable habitat for a critically endangered fish, the Delta Smelt. The current theory for the Delta Smelt’s demise is agricultural diversions of freshwater raised salinity to intolerable levels. That perceived competition for freshwater has pitted farmers against efforts to save the smelt. Learning how the smelt survived a thousand years of much higher salinity might provide a win-win solution.

Agricultural and urban needs also compete with salmon survival. One promising win-win solution is having juvenile salmon develop in irrigated rice fields after hatching. Experiments show young salmon grow much bigger in rice fields. Additionally, low stream flows hamper salmon migration. But when enough water is naturally stored as groundwater, seasonal groundwater release can maintain adequate summer stream flows. Unfortunately, landscape changes have caused stream channels to cut downwards, draining local groundwater and drying the land. Restoring streams and groundwater would provide great benefits.

During my research in the Sierra Nevada, a meadow we were monitoring began to dry; willows died, and bird populations crashed. Many suggested it was just what global warming models predict. However, we determined a railroad track built over 100 years ago had caused the meadow’s stream channel to cut downwards, draining its groundwater. I initiated a watershed restoration. Vegetation quickly recovered, and wildlife increased. Despite California’s years of extreme drought, the restored meadow remained wetter than it had before restoration and before the drought.

So, I warn: knee-jerk reactions simply blaming climate change for devastating dryness, blind us to real causes and real environmental solutions.

Jim Steele authored Landscapes and Cycles: An Environmentalist’s Journey to Climate Skepticism.

Contact: naturalclimatechange@earthlink.net

CO2 and crops: NAS vs. science

Reblogged from Watts Up With That:

WUWT regular David Burton writes:

One of the most pernicious examples of disinformation promoted by the Climate Industry is the claim that manmade climate change from CO2 emissions threatens agriculture and “food security.” That’s the exact opposite of the truth. CO2 is “plant fertilizer,” and hundreds of agricultural studies have shown that higher CO2 levels are dramatically beneficial for agriculture, to levels far above what we can ever hope for outdoors.

Most plants grow best with daytime atmospheric CO2 of at least about 1500 ppmv. That’s about what CO2 levels are thought to have averaged during the Cretaceous. It’s 1090 ppmv higher than the current average outdoor level of about 410 ppmv.

In other words, most plants would grow best if CO2 levels were increased by more than eight times the measly 130 ppmv by which mankind has managed to increase CO2 levels since the “pre-industrial” Little Ice Age. (Levels even higher than that wouldn’t hurt plants, but they wouldn’t help much, either.)

https://sealevel.info/co2.html?co2scale=2
clip_image002
(click to enlarge)

That’s why most commercial greenhouses use “CO2 generators” to raise daytime CO2 to about that level. It makes the plants healthier, faster-growing, and more productive.

Note: There are several different kinds of photosynthesis. Plants that use “C3” or “CAM” photosynthesis benefit the most from higher CO2 levels. “C4” crops benefit the least, but even C4 crops benefit when under drought stress. Most crops use C3 photosynthesis. There are only four important C4 crops, all of them grasses: corn [maize], sugarcane, sorghum, and millet.)

https://www.sealevel.info/C3_and_C4_Pflanze_vs_CO2_Konzentration_2018.png
clip_image004
(dependence of the rate of photosynthesis on the amount of CO2 in the air in C3 and C4 plants, from https://de.wikipedia.org/wiki/Photosynthese; click to enlarge)

The value of higher CO2 levels for agriculture is not a new discovery. Svante Arrhenius wrote about it in 1908, and cited a source from as early as 1872. Arrhenius predicted that:

“By the influence of the increasing percentage of carbonic acid [CO2] in the atmosphere, we may hope to enjoy ages with more equable and better climates, especially as regards the colder regions of the earth, ages when the earth will bring forth much more abundant crops than at present, for the benefit of rapidly propagating mankind.”

In 1920, Scientific American reported the results of German greenhouse and F.A.C.E. experiments with CO2 supplementation. The experiments were so spectacularly successful that SciAm called anthropogenic CO2 the precious air fertilizer.” From this photo, which accompanied the article, you can certainly see why:

SciAm 1920: Carbonic Acid Gas to Fertilize the Air
clip_image005
(click to view article)

Over the last century, many hundreds of studies have measured the large benefits of higher CO2 levels for most crops:

https://sealevel.info/CO2-pineGrowth100120_white_bg.png
clip_image007
(Dr. Sherwood Idso showing the effect of CO2 level on pine trees; click to enlarge)

But the National Academy of Sciences would have you believe that global warming threatens agricultural productivity. So let’s examine that claim.

Here’s a recent article from the Farm Bureau, reporting preliminary U.S. state-by-state corn and soybean yield numbers for 2018:

Farm Bureau 2018: Corn and Soybean Yields are YUUUGE
clip_image009
(click to view article)

Of course the headline obviously suggests that climate change hasn’t hurt corn and soybean production, so far. But that’s not the most interesting part of it.

Look at the wide distribution of states, which grow corn. In this map, from the article, you can see that Minnesota’s 2018 corn yields averaged 191 Bushels Per Acre (BPA), and Mississippi’s corn yields averaged 185 BPA. The “breadbasket” states of Illinois and Iowa both had even bigger bumper crops, with yields above 200 BPA:

https://www.fb.org/images/uploads/_900w/Yuge_fig_1.jpg
clip_image011

Now, compare that map with this growing-zone map (courtesy of arborday.org). In it you can see that Minnesota and Mississippi are about four climate/growing zones apart. Minnesota is mostly zone 4, and Mississippi is almost entirely zone 8. Illinois and Iowa are a mix of zones 5 & 6:

https://sealevel.info/zones-2015_700x420.png
clip_image013

U.S. climate zones span 10°F, so the center-to-center difference between four zone numbers is 40°F = 22.2 °C.

However, in this map you can see that Minnesota’s corn is mostly from the southern half of the state, which is a mix of zone 4 and zone 5, and Mississippi’s corn is mostly from the northwest half of the state, which is upper zone 8.

http://ctgpublishing.com/united-states-corn-production/
clip_image015

So the average temperature difference between the middle of the prime corn-growing regions of the two states is a bit less than 40°F, I’d call it about 33 ±2°F.

In Celsius, that’s a temperature difference of 17.2 to 19.4 °C (midpoint 18.3°C), between Mississippi (185 BPA) and Minnesota (191 BPA).

In other words, it is plain that an average temperature difference of about 18°C has little effect on corn yields.

Many other major crops are even less climate-sensitive:

● Wheat is profitably grown in zones 3 through 9, from Saskatchewan to south Texas, a temperature range of over 35°C:

https://sealevel.info/wheat_growing_regions_usa_and_canada_700x840.png

clip_image017

● Maine & Florida are both major producers of Potatoes:

http://potatoesusa.com/us-potato-industry/us-growing-regions
clip_image019

● Soybeans are grown from Louisiana & Mississippi to Minnesota & Canada:

https://www.fb.org/images/uploads/_900w/Yuge_fig_4.jpg
clip_image021

What, then, are we to make of this PNAS paper?

Zhao C, et al. (2017) Temperature increase reduces global yields of major crops in four independent estimates. Proc Natl Acad Sci USA 114:9326–9331. doi:10.1073/pnas.1701762114

From the title you would probably assume that they found anthropogenic climate change causes crop yields to decline, because negative impacts of temperature increases exceed the positive impacts of CO2 fertilization and improved drought resistance from higher CO2 levels. That’s what you’re supposed to think, and that’s how the press release reported it:

Climate change will cut crop yields,” said the caption on Phys.org, and called the little five-page paper “a major scientific report.”

Global Warming Will Sear Three of Four Major Grain Crops,” said the caption on Haaratz.

But if you read the paper, or if you read Eric Worrall’s excellent 2017 analysis of it on WUWT, you’ll discover that the authors did not actually say that. Instead, they wrote that they were discussing what they think would happen to yields in an imaginary world “without CO2 fertilization, effective adaptation, and genetic improvement.”

Of course “without CO2 fertilization” means they’re ignoring the beneficial effects of higher CO2 levels, which obviously divorces the paper from any pretense of presenting predictions of future reality.

But it’s even worse than that. Can you guess what their assumption of no “effective adaptation” to a warming climate actually means?

For annual crops, “effective adaptation” means adjusting spring planting dates, and perhaps adjusting cultivar selection. That’s all.

It’s not rocket science. In America’s heartland, moving the planting date up by about six days compensates for 1°C of warming:

https://www.currentresults.com/Weather/Kansas/Places/wichita-temperatures-by-month-average.php
clip_image023

So +4°C of warming is equivalent to planting about 24 days late.

The assumption of no “effective adaptation” to warming means these 29(!) authors assumed farmers are all idiots, who can’t figure out when they should plant their crops. (Projection, maybe?)

It’s utterly preposterous. The reality is that most farmers are not idiots, anthropogenic CO2 is highly beneficial “air fertilizer,” and the further that CO2 levels rise, the more productive farms will become.

That fact is true for the great majority of crops, nearly everywhere in the world. Yet the NAS has been promoting the anti-scientific claim that rising CO2 levels are bad for agriculture, for years. This 2011 NAS / NRC propaganda graph is a particularly outrageous example:

https://nas-sites.org/americasclimatechoices/more-resources-on-climate-change/climate-change-lines-of-evidence-booklet/evidence-impacts-and-choices-figure-gallery/figure-28/
clip_image025
(click to enlarge)

Notice the red “US Maize” and purple “India Wheat” traces, and where they intersect the 4°C line. You can see that they’re predicting that in the event of a 4°C temperature increase, U.S. maize (corn) yields would decline by a devastating 60%, and wheat yields in India would fall 68%.

(Of course such a large temperature increase is thoroughly implausible, but never mind that. That’s a different rant, for a different day.)

Today’s rant is this:  That NAS / NRC graph is a lie.

If a mere 4°C of warming were actually that destructive to corn yields, it would obviously be impossible to profitably grow corn even in Tennessee & Kentucky (zone 7, 174-175 BPA in 2018), let alone Mississippi (zone 8, 185 BPA).

Likewise, if a mere 4°C temperature increase were actually that destructive to wheat yields, then it would obviously be impossible for North Americans to cultivate wheat across seven climate zones, from Saskatchewan to south Texas, spanning an average temperature range of about 35°C.

That NAS / NRC graph is utter nonsense. But even though it is old, it’s still being used by climate change zealots to mislead people. I stumbled across it because someone posted it in the comments on an article at ArsTechnica. (I’m currently banned for a week there, for “ignoring moderation,” because I disagreed with their leftist moderator. My first comment there [screenshot] has been deleted, too, but some of the others are still there. They look “faded” because the ArsTechnica comment system fades-out comments with lots of downvotes.)

On March 22, 2012, Rud Istvan did a wonderful, in-depth demolition of that graph, on WUWT & ClimateEtc:

https://judithcurry.com/2012/03/22/nrcs-artless-untruths-on-climate-change-and-food-security/

https://wattsupwiththat.wordpress.com/2012/03/22/nrcs-2011-climategate/

Yet, despite their propaganda graph having been completely debunked, the NAS is still disseminating it, to promote the climate scare.

Here it is on their web site, on p.28 of a little 40 page propaganda booklet, which appears to be designed to be used as a resource by schoolteachers:

https://nas-sites.org/americasclimatechoices/more-resources-on-climate-change/booklet-warming-world-impacts-by-degree/

http://dels.nas.edu/resources/static-assets/materials-based-on-reports/booklets/warming_world_final.pdf

Here it is, in convenient PowerPoint format, for incorporation into your talk at the local garden club (slide 21):

http://dels.nas.edu/resources/static-assets/exec-office-other/climate-change-figures.ppt

(The file metadata indicates that the slides were created by “Rebecca” in June, 2013 — more than a year after Rud had discredited the graph.)

It’s also on p.161 of this free 299-page ebook:

https://www.nap.edu/catalog/12877/climate-stabilization-targets-emissions-concentrations-and-impacts-over-decades-to

If Zhao and his 28 co-authors really believe, as they claimed in their PNAS paper, that correctly assessing the impact of climate change on agriculture is “critical to maintaining global food supply,” then it is incredibly cynical of them and the NAS to publish misleading papers and graphs which encourage policymakers to take steps that will actually reduce that the global food supply.

I’m beginning to wonder: Does the “A” in “NAS” is still stand for “Academy of,” or does it now stand for “Anti-,”?