Australian Daily Electrical Power Generation Data – Friday 17th May 2019

PA Pundits - International

By Anton Lang ~

This Post details the daily power consumption data for the AEMO coverage area in Australia. For the background information, refer to the Introductory Post at this link.

Each image is shown here at a smaller size to fit on the page alongside the data for that day. If you click on each image, it will open on a new page and at a larger size so you can better see the detail.

Note also the scale change for all of the images, and that even though they look similar in size of generation, that scale (the total power shown on the left hand vertical axis) has been changed to show the graph at a larger size to better fit the image for that graph.

Friday 17th May 2019

Total Power Generation All Sources

Here, the total power generation from every power plant source is the…

View original post 3,499 more words

Advertisements

The West vs. Africa: Energy Hypocrisy as Seen from Kenya

Science Matters

Suleiman Shahbal writes in Kenya at Standard Media Global warming: Why the West preaches water yet drinks wine.. Excerpts in italics with my bolds.

A few months ago I was with a group of Kenyan politicians in Abu Dhabi. Hosting us for a cup of coffee was my good friend Abdalla Nassir. Abdalla is a serial entrepreneur who owns 94 businesses, including the coffee shop. His 95th business is a steel mill that he was going to open in Djibouti, targeting the Ethiopian market of 80 million people.

I asked him why not in Kenya; the gateway to the Comesa market of 150 million people, to which he replied that the cost of power in Kenya is more than twice that of Djibouti and Ethiopia. One week later, I read that a glass company in Mtwapa had just closed down, with the loss of over 400 jobs…

View original post 798 more words

U.S. energy use rises to highest level ever

Tallbloke's Talkshop


In terms of original power sources (i.e. not electricity), the runaway leaders were petroleum and natural gas which between them took over two-thirds of the total share. Coal and nuclear were a distant third and fourth. Best of the rest was biomass at just over 5% of the total, easily more than wind and solar combined.

Americans used more energy in 2018 than in any other year, according to the most recent energy flow charts released by Lawrence Livermore National Laboratory (LLNL).

Overall total energy consumption rose to 101.2 quadrillion BTU (or “quads”), reports TechXplore. The prior record, set in 2007, was 101.0 quads.

Energy use went up by 3.6 percent from 2017, which also is the largest annual increase since 2010.

View original post 322 more words

New York Times Pushes Nuclear Power as the Solution to Climate Change

Reblogged from Watts Up With That:

Guest essay by Eric Worrall

In the face of the utter failure of large investments in renewables to deliver CO2 reductions, greens are increasingly embracing nuclear power as the solution to climate change.

Nuclear Power Can Save the World

Expanding the technology is the fastest way to slash greenhouse gas emissions and decarbonize the economy.

By Joshua S. Goldstein, Staffan A. Qvist and Steven Pinker
Drs. Goldstein and Qvist are the authors of “A Bright Future: How Some Countries Have Solved Climate Change and the Rest Can Follow.” Dr. Pinker is a psychology professor at Harvard.

April 6, 2019

Where will this gargantuan amount of carbon-free energy come from? The popular answer is renewables alone, but this is a fantasy. Wind and solar power are becoming cheaper, but they are not available around the clock, rain or shine, and batteries that could power entire cities for days or weeks show no sign of materializing any time soon. Today, renewables work only with fossil-fuel backup.

Germany, which went all-in for renewables, has seen little reduction in carbon emissions, and, according to our calculations, at Germany’s rate of adding clean energy relative to gross domestic product, it would take the world more than a century to decarbonize, even if the country wasn’t also retiring nuclear plants early.

But we actually have proven models for rapid decarbonization with economic and energy growth: France and Sweden. They decarbonized their grids decades ago and now emit less than a tenth of the world average of carbon dioxide per kilowatt-hour. They remain among the world’s most pleasant places to live and enjoy much cheaper electricity than Germany to boot.

Read more: https://www.nytimes.com/2019/04/06/opinion/sunday/climate-change-nuclear-power.html

The rise of mainstream green advocacy for nuclear power is long overdue.

I have never understood how anyone who thinks CO2 is a looming threat can argue in good faith against the evidence of two countries which have affordably reduced their CO2 emissions to a tenth of what everyone else emits, by embracing nuclear power.

Do You Really Understand How Shale Gas Companies Drill Horizontally?

PA Pundits - International

By Dr. Jay Lehr ~

Admit it, you have no clue. Of course we have all seen the diagrams of Shale Gas Wells with the pipe going vertically down into the ground and then turning a right angle to proceed horizontally where the well will be hydraulically fractured (not Fracked). How is that possible? Can you think of any mechanism underground where pipe could turn ninety degrees and keep the end of the pipe, where the drill bit is spinning 360 degrees, to continue penetrating the rock encountered? Of course you can’t, because it cannot be done. Yet amazingly, surely 90 percent of all folks even remotely interested in the topic of shale gas development do not question the possibility of this impossibility. So read on, this well kept secret will be unveiled.

Hydraulic fracturing flat schematic vector illustration. Fracking process with machinery equipment, drilling rig and gas rich ground…

View original post 677 more words

Going Dutch: How Not to Cut Emissions

Science Matters

Everyone knows the Dutch are serious and determined people.  Their saying: “God created the earth, but the Dutch created the Netherlands.”  A relative of mine had some run-ins with Dutch neighbors, and his saying about them:  “Wooden shoes, wooden heads, wouldn’t listen.”  Well, now the Dutch have another saying:  “Whatever you do, don’t try to cut carbon emissions the way we did.”

You see, being Dutch they took on the challenge of “fighting climate change,” and are now living to regret their actions.  Karel Beckman writes in Natural Gas World  The Flaws in Dutch Climate Policy Mar 20, 2019.  H/T GWPF  Excerpts in italics with my bolds.

Why should the wisdom of Dutch climate policy be of concern to anyone besides Dutch taxpayers? At this moment all developed countries are entering a new phase in their climate policies. They are moving beyond broad reduction targets and temperature goals to the…

View original post 2,897 more words

Air Got Cleaner – More Sunshine Hit The Ground

sunshine hours

Less sulphates, cleaner air , more sunshine hitting the ground.

An observed decline of surface shortwave radiation (SSR) in Europe discovered from about 1950s until about the 1980s and many parts of the world is attributed to increasing emissions of anthropogenic aerosols (dimming phase). The followed increase of SSR in some regions (brightening phase) is a consequence of the clean air business in Europe.

The simulations with detailed treatment of aerosols and their interaction with clouds are needed for understanding the regional SSR trends. The NASA GISS ModelE2 is used in this study. It is based on transient simulations with natural and anthropogenic forcings.

We compare two simulations with transient aerosol emissions with the focus on aerosol effects on clouds. For the annual mean SSR, the dimming trends range between -4.4 W/m2 over the Mediterranean region and -1.7 W/m2 over the middle Europe. Brightening trends range from…

View original post 232 more words

Megawatts And MegaWattHours

PA Pundits - International

By Anton Lang ~

These two similar sounding terms are perhaps the most misunderstood things in the whole electrical power generation debate, and while there are some important things in this debate, these two terms are in that small group of the most important of them all.

Firstly, the simple explanation for both terms.

Megawatts means the design specification maximum power that the generator can actually deliver. This is what I refer to as the Nameplate for the generator. The acronym for Megawatts is MW.

MegaWattHours is what that generator, while it is actually working, delivers in power to the grid over a period of time, here hours, and that period of time can be an hour, a day, or a year. The acronym for MegaWattHours is MWH.

I will explain it in a little more depth below, and show you, with the use of some graphs what the difference…

View original post 1,758 more words

Western Europe Power Mix In January

NOT A LOT OF PEOPLE KNOW THAT

By Paul Homewood

h/t Joe Public

There is a useful site for collecting data on the European power sector, called Energodock:

image

http://energodock.com/germany/electricity-generation

It gives a variety of data by country. I have used it to analyse generation data across Western Europe for last month. (I have ignored Eastern Europe at this stage).

image

Some observations:

View original post 211 more words

Getting Gas (and Electrons) Across America

Reblogged from Musings from the Chiefio:

This is a small photo essay with comments about gasoline and Diesel prices across America, along with one observation on charging your Telsa in California. We’ll start off in Louisiana. I was startled to find that a couple of off ramps in Louisiana have now put Traffic Circles at the end of them. This dumps a constant stream of unsuspecting motorists into a “circle” that has a highway trying to cross it the other way. At busy times this will inevitably result in a circle full of cars from one way or the other blocking the circle and then either the freeway or the highway will end up backing up until “there are issues”.

Sigh.

Traffic circles may be cheap and easy for low use areas (so you avoid the cost of traffic lights and all) but for an intersection of a significant local highway with a major freeway off ramp, it’s just asking for trouble. They have apparently already had trouble as the “on ramp” portion had added a fairly dense set of vertical plastic “bumper” dividers to keep folks tracked into the right lane to right turn to onramp and out of the circle proper.

I wish folks designing roads in the USA would not look to Europe and their traffic circles for guidance… Ever try to take a 5th wheel or 18 wheeler through a traffic circle? Ever try to get into one with one of those guys already in it? Just OMG PITA.

With that out of the way, somewhere off I-12 bypassing New Orleans, I needed gas. This was fairly typical across most of Texas and L.A. along with much of Mississippi, Alabama, and New Mexico. Prices rose a little in Florida and Arizona.

The South & Louisiana

Tesla Anyone?

Louisiana Gas Prices Jan 2019

A couple of things to note about that sign. First off, it is mostly advertising Regular Gas. A H/T to Larry Ledwick on Octane. In another comment thread about why octane was lower in the West than on the East Coast, he reminded me that cold and altitude reduce octane needs. This caused me to experiment a bit. Turns out that Angus (my black Mercedes 190) has a knock sensor, so will run on “less than premium” but with reduced performance at full throttle as “what the added gas giveth, the spark retarding taketh away”.

I did some tests. On Mid Grade it loses a bit of the very full throttle, on regular it becomes doggy at about 1/2 to 3/4 throttle (you give it more gas and nothing much happens) while on Super it stays fast and with full acceleration. But if you are sitting at 1/2 throttle for 6 hours on the freeway why pay extra to have “zoom on tap”?

So after some tests, I started slowly working down the octane. Turns out that I can easily run Regular once out of the desert hill climb of California to Arizona and especially in the cool of the night. So now I fill up with Super in town (need that ‘off the line’ zip and freeway onramp performance!) but then do a tank of mid-grade for the ‘get out of dodge’ and then swap to regular for the Long Steady Cruise. It has saved me buckets of money with almost no impact on drivability. On the return from Florida I do run some mid-grade for the climb up the Rockies or for the climb to the High Desert as that’s fuller throttle use.

So, in fact, about 3/4 of my “run” is on Regular. (Some of the “mid-grade” is ‘mix your own’ where I’ll add 1/4 tank of Super to a residual 3/4 tank of Regular to get it ready for the climb. Octane enhancement is non-linear, so 1 unit of boost (think Ethyl lead) would give mid-grade but then it took 4 to get Super. This means 1/4 tank of Super in 3/4 of regular would give that same 1 unit of booster as mid-grade. I’m assuming non-lead octane boosters work the same as TELead…)

Lowest price I paid was about $1.69 / gallon. Nice.

So, ok, what else? Notice that yellow price of $1.95 ? That’s for “E 20” or 20% ethanol fuel for Flex Fuel cars. It is one octane point higher (88 vs 87) but costs a lot more, and with less fuel value. I have no idea why folks would pay more for less fuel heat content. However, it might let Angus pass California Smog Testing… except they don’t sell it here 😉

Next up, Diesel at $3 / gallon. WT? About a 70% price premium? Just crazy. In a real competitive market the max you would expect is a 30% premium for the added fuel value. For decades it was in fact sold at a discount to gasoline as it was a residual from gasoline manufacture. Yes, in winter the demand for #2 Heating Oil raises Diesel price some (as they are both #2 Oil just different degrees of clean) but usually that was a dime or 20 ¢ / gallon. Not a $buck. All across the nation I saw Diesel running at about $1/gallon MORE than gasoline. Often more than Super by a $buck, and in some places as much as $1.35 to $1.50 a gallon more. Just crazy. Yet mixed in along the way were a few non-brand places with Diesel at about $2.50 / gallon. Still higher than gasoline, but at least quasi sane. If running a trucking fleet, I’d be seriously looking at Gasoline engines or LNG alternatives, despite Diesel being a better engine and much more efficient.

Next we go to Texas:

Texas Gasoline Jan 2019

Now much of Texas was cheaper than this place. This was at a Truck Stop middle of nowhere and without much competition. Texas had some places down in that $1.6x range (but I couldn’t see how to get to a couple of Exxon stations with that price near Houston… Texas has these “frontage roads” next to the freeway and you get on / off on short suicide ramps that cross frontage road traffic at an angle… and then you may get to drive 5 miles to an underpass to get back another 5 miles to that gas station you passed and saw from the freeway… just not worth it.) So I stopped at the easy on / off Truck Stops instead 😉

Now here we see “only” about a dollar spread of Diesel over gasoline. So I’m driving my 25 mpg Gasoline car instead of my 25 mpg Diesel car… I’m sure that’s some Green Nuts idea of a benefit, but one carries a lot more “goods” for the gallon than the other one. We ought to be encouraging Diesel cars, not discouraging them. They are about 30% more efficient and that is the same as finding 30% more oil reserves.

Next note that they sell Propane for $3 / gallon. Propane ought to sell for less than Regular Gasoline on a BTU basis (or thermal energy basis). At one time it did and car conversions to propane were popular. At these prices not so much. Still, it’s about $1 to $2 / gallon cheaper than in California. So folks with RVs planning a cross country trip ought to plan a fill up in Texas and avoid arriving in California needing cooking fuel.

Texas is 1/3 of the cross country trip. On I-10 it is 880 miles. IIRC entry on I-20 is a bit longer at 938 miles. For a 2800 mile trip from SF area to Orlando 1/3 is 933 miles. Essentially the trip is 1/3 “mostly California” with a smidge of Arizona and New Mexico, then 1/3 Texas, then you get the
Ready for California Sticker Shock? 1/3 that’s 200 miles of Louisiana, a tiny bit of Mississippi and Alabama (about 80 miles) and then that long Florida Panhandle and I-75 down the middle. Florida gas used to be about 30 ¢/gallon more expensive but they seem to have gotten closer to their neighbors recently (more likely by others raising taxes on gas rather than Florida backing off…)

So when making that drive, it is optimal to put as much of your drive in Texas and each side of it as possible and have as little as possible in California. Why? Well let’s look at California prices…

And Then There Is California

Ready for California Sticker Shock?

Returning from Florida, California is mostly the drive from Arizona across the Mojave Desert and the L.A. basin, and then a run up I-5 to San Francisco. I always tank up just before leaving Arizona, and then top up about 1000 Palms or Desert Center (so as to avoid the need to stop in the L.A. Jungle.) Prices tend to rise after the desert and while you can find decent prices in the L.A. Metroplex (especially at ARCO stations) it isn’t easy to spot the good ones. Then, on the run up I-5, it can be highly variable. We’re talking $1/2 / gallon in 14 miles from the “one gas station” exit to the “several with competition”. It can be a $5 answer to know where to stop. I try to use Gas Buddy before I go to make sure I have some clue about where to buy.

https://www.gasbuddy.com

So I’d been stopping at a cluster of gas stations at about highway 46. On the way out I stopped there only to find a Holy Hell Traffic Mess. Most of the right side of the west bound road having cement barriers, loads of folks backed up trying to make turns into solid (stuck) traffic to get out of gas stations and back to the freeway. There’s an ARCO station there with good prices for cash (they stick you for an added fee for cards though) but just not worth the pain with all the construction. A few miles down the road I saw an IHOP sign with a price (not in the usual Diesel Green nor in Gasoline Red but in ?? Yellow) that was quite nice. So decided to stop there on the way back. Turns out it’s a “Bait & Switch” gimmick.

IHOP Shell south of Hwy 46  on I-5 California

Yeah, over $4 / gallon. Welcome to California…

The interesting thing for me is that this Diesel Price is rather nice. I’m assuming it is Diesel as it is in green. Why “no brand” is so relatively cheap is an interesting question. Clearly they expect most folks to think it’s a gasoline price, take the exit, and then say “Oh Well” buy gas anyway and then get food at the IHOP. In reality, most folks will do what I did: Note I’d been snookered and vow to Never Ever stop there again. The IHOP was empty as were most all of the gas stalls. Then again, it was late in the evening.

Now of particular interest to me was that those prices were not the end of the gouge. Turns out there was a smaller sign under this that let you know the real gouge amount:

Detailed Gas Cost at Shell / IHOP Jan 2019

You get a 20 ¢ “uplift” if you use your pay-at-the-pump card for convenience. Even a Debit card. I saw this at other Shell stations too (including one in El Paso Texas – so it isn’t just a California thing).

Still, think just a moment. $1.69 was my low end, and this is $4.69 for premium on the card. A full $3 / gallon MORE.

Now just so you don’t think all of California is completely insane, I drove down the road a ways to another gas station and here’s what I payed at the ARCO there (no uplift for the card, BTW):

ARCO California I-5 Jan 2019

So $2.67 / gallon is a heck of a lot better than $4.29 / gallon and even $3.29 / gallon is better than $4.69 (by $1.40 !) so clearly a bit of shopping around is a big win. Furthermore, as I-5 is dead flat and I drive it in the cool evening, my comparison was really $2.67 vs $4.69 by combining modest gas price shopping with some octane management. That’s a cool $2 / gallon saved on about 12 gallons or $24 in ONE gas stop. It really really pays to shop your gas in California.

But then I’m still left wondering what I’m getting for my $1 / gallon MORE paid for regular gas in California over Texas / Louisiana…

Tesla Anyone?

It was interesting to note that the IHOP Shell station had a Tesla charging station installed. I’m sure the Tesla drivers will feel smug about avoiding all that $4+ gasoline (having no reason to shop around and find out it is much cheaper just down the road…). At least they would if there were any of them:

Tesla Charge Station I-5 California at IHOP / Shell Station

This is an 8 stall charging station. It is just as you pull into the property. Behind me are the gasoline islands, the convenience store and the IHOP restaurant. Note the lone Tesla parked at the furthest way stall? I did not see a charging cable attached to it (but didn’t look much) and why would you park as far away as possible at the entrance?

My guess is that this belongs to the owner. Was it given to them as an inducement to have the station installed? Perhaps with the “free” electricity early Tesla buyers got in the package? I note in passing all the other stalls are empty; and parked at the driveway entrance, it acts as an advertisement that this is where to stop.

Now also note that brown box / enclosure behind the charge points. That’s the Semi-truck sized charger that drives those charge points. That’s a massive amount of electricity for 8 stations.

On my drive into LA (headed out to Florida) I noticed that 2 cars / second were going the other way. My side was about as full. That’s 4 cars / second for all of about 6 hours of freeway. 3600 seconds / hour. 21600 seconds. 86,400 cars. Two charges to get to L.A. and a third on arrival so you can get somewhere interesting gives 259,200 charges. Figure about 10 kW-hr / hr for an average eCar at cruise x 3 hours is 30 kW-hr / charge (likely very conservative estimate) or about 7,776,000 k-W hours of charge.7,776 MegaWatt hours. 7.7 GigaWatts. From where would that power come were all those cars electric? Notice this ignores the trucks… That is just to run about 1/2 of ONE of our major interstate highways. There’s also Highway 99 on the other side of the valley and 101 by the coast. Then all the crossing highways. Then the entire SF Bay area and the killer, the LA Metroplex. I’d guess easily it goes over 100 GigaWatts. Where are the 100 new nuclear power stations to make that electricity 24 x 7 x 365? (You can’t expect the freeway to come to a halt on windless nights… we have them most of the time.)

So 8 empty charging stations (not counting the advertising car) when the goal is closer to 1/4 Million full…

By the year 2020 or 2030.

Ain’t gonna happen.

I’m ever more convinced that the world divides into Engineers who can do math (easily and well) and the Green Fools who can’t and just don’t believe that the numbers matter. There is simply no way you will get 100 GW of new power, 24 x 7, for charging eCars and get all those charge points built and get about 40 Million eCars sold in California alone in anything under a couple of decades (and that only with a massive emergency level of pressure). Even then, the only technically practical way to get that power is nuclear generating stations. The size is just too large for anything else.

Then there is that small matter of nobody bothering to drive their Tesla to LA due to “range anxiety” and not wanting to sit at the IHOP At Nowhere for 3 hours while it charges… certainly not when they can stuff gas in their car in a minute and be rolling again.

Now generalize that problem to the 2000 mile runs coast to coast of Interstates: 8, 10, 20, 40, 70, 80, 90 and all the 1000 mile N / S runs that connect them about every 50 to 100 miles… The required electric generation is a full on boggle. I think I’ll need to find other ways to estimate that quantity. Perhaps taking our “Quads” of fuel burn and figuring an eCar kW-hr conversion. Even without that, it’s pretty clear it just isn’t going to be possible to charge a nation of cars & trucks.

In Conclusion

Imagine you want to build something. You get materials and parts shipped in. Product taken away in trucks. Your workers arrive in their cars and expect to make enough money to feed themselves and those commuting costs, as wages.

Where would you put your company? Where Gas is $4+ / gallon, or where it is $1.80 or less / gallon?

I’ve noticed groceries and fast food have similar price “uplift” in California. As a worker, would you chose to work in a place with a $4 fast food lunch available or where it ran you $6 to $8 for lunch? Where you get 50% more groceries for your earned dollar, or where they tax it at 11 % when you earn it and 10 % when you spend it and THEN the stuff you buy costs more too?

Some of the absurdities of manipulated markets can last for a few years (like pricing your Diesel at $3.50 and then giving a $1/gallon ‘discount’ to corporate trucking lines back to the real $2.50 it ought to be; and blowing off the individual trucker and car drivers) but eventually reality bites.

In California, we have a large influx of Hispanic and Asian new arrivals. There is an exodus of the Middle Class. The State is dividing into a Rich Elite and a poor immigrant class. That is not stable and will fail.

With that context, why on Earth would anyone start a business in California, or keep one here if they can move it?