Environmentalist Tells Tucker Carlson: Renewables Can’t Save The Planet

Reblogged from Watts Up With That:

charles the moderator /

From The Daily Caller

Jason Hopkins | Energy Investigator

Environmental activist Michael Shellenberger explained to Fox News host Tucker Carlson that it’s not possible to shift the country’s grid completely to renewable energy.

“I was one of the founders of, sort of, the first Green New Deal back in 2003, 2007,” Shellenberger, the founder of Environmental Progress, began. “People don’t remember President Obama, we spent about $150 billion on renewables between 2009 and 2015, and we just kept encountering the same kind of problems.”

WATCH:

Shellenberger laid out the two main problems that plague wind turbines and solar panels: unreliability and low energy density.

“They just depend on when the sun is shining and when the wind is blowing, which is 10 to 40 percent of the year,” he said, demonstrating how the intermittent energy production of wind and solar makes them unreliable sources of power. “Something people are not as aware of: the low energy density of sunlight and wind. Basically what we’ve been finding is that the lower the energy density of the fuel … the bigger the environmental impact.”

Because solar and wind produce such small amounts of energy, according to Shellenberger, they require a much larger amount of land to generate electricity.

Instead, the Environmental Progress founder touted the benefits of nuclear energy, a source of power that can generate large amounts of reliable energy while emitting zero carbon emissions. However, Shellenberger said the public has yet to fully embrace nuclear energy because they associate it with nuclear bombs, past nuclear accidents and a desire to use energy that harmonizes with the natural world.

“That turns out to be a bad idea because the more natural resource we use, the worse it is for the natural environment,” he said.

Nuclear-Plant

Nuclear power plant Ohu near Landshut, Bavaria, Germany. Shutterstock

As environmental activists become more alarmed about the threat of climate change, many are re-evaluating how they perceive nuclear power. The U.S. nuclear industry currently supplies about 20 percent of the country’s total electricity, but it provides roughly 60 percent of its zero-carbon electricity. A growing number of climate change-oriented lawmakers are now passing subsidies and support programs to keep nuclear plants in operation. (RELATED: Lawmakers Overwhelmingly Vote To Modernize US Nuclear Fleet)

Shellenberger went on to say it was “very disappointing” that Alexandria Ocasio-Cortez’s widely publicized Green New Deal does not include provisions for nuclear energy.

Ocasio-Cortez’s original FAQ document on the Green New Deal, in fact, called for a phase out of nuclear power. However, following the botched roll out of the deal, her team took the anti-nuclear language off their website.

Advertisements

A Brutal Example Of Why 100% Renewables Can’t Work

PA Pundits - International

By David Wojick, Ph.D. ~

The brutal cold wave that just struck America provides a stark example of why 100% renewables cannot possibly work. Once the massive high pressure system was in place there was almost no wind, so no significant wind power. And the coldest temperatures by far were at night or early morning, when there was no solar power either.

For example, take the Mid Atlantic region overseen by the PJM regional transmission organization. PJM coordinates the movement of wholesale electricity in all or parts of Delaware, Illinois, Indiana, Kentucky, Maryland, Michigan, New Jersey, North Carolina, Ohio, Pennsylvania, Tennessee, Virginia, West Virginia and the District of Columbia. They also monitor system reliability.

At 8 am on January 31, PJM was in the deep freeze. Total electric power usage was reported to be roughly a whopping 140,000 MW. Of that wind provided just over 1,000 MW (next to nothing) and…

View original post 598 more words

Cleaning Solar Panels

sunshine hours

To go along with my post on 200,000 liters of water per day to clean solar panels is a drone video of solar panels being cleaned (not the same solar farm).

Those panels are pretty dirty.

Plus an anecdotal experiment video that claims a 17% improvement in output. (But be careful cleaning your own panels. I read that soap is a bad thing)

View original post

200,000 Liters of Water a Day to Keep Solar panels Clean

sunshine hours

When some green cult member complains about water used in fracking read this:

(A lakh  = 100,000)

RAMANATHAPURAM: The world’s largest solar power plant, installed by the Adani Group in 2,500 acres in Kamuthi taluk of Tamil Nadu, is not as green or sustainable as it seems. Local residents claim the 648 MW renewable energy plant is a water guzzler.

It takes as much as 2 lakh litres of good quality water to keep its 25 lakh solar modules clean each day. That water is sourced from borewells 5 km away without permission from the district authorities, the villagers allege.

Near the dried Gundar riverbed on Kamuthi-Mudukulathur road at Kottai Medu, one can find borewells functioning round the clock, filling 6,000-8,000 litre tanks that are attached to tractors.

Around 40 tractors are said to have been contracted by Adani Green Energy (TN) for cleaning the giant solar modules, each…

View original post 45 more words

Western Europe Power Mix In January

NOT A LOT OF PEOPLE KNOW THAT

By Paul Homewood

h/t Joe Public

There is a useful site for collecting data on the European power sector, called Energodock:

image

http://energodock.com/germany/electricity-generation

It gives a variety of data by country. I have used it to analyse generation data across Western Europe for last month. (I have ignored Eastern Europe at this stage).

image

Some observations:

View original post 211 more words

California Renewables to Lose PG&E $$$

Bottom Line Up Front:

Summary

California continues to serve as a learning laboratory for misguided and futile climate policies.  This time the lesson (for those with eyes to see) is to demonstrate that renewable energy programs are parasites who feast on the financial lifeblood of their host utilities until the cash is gone.

Science Matters

The investigation continues into the origin of the Camp fire, which some say started with a faulty PG&E wire in Pulga, California. (Carolyn Cole / Los Angeles Times / TNS)

Sammy Roth of LA Times digs deeper than others into the fallout from PG&E’s wildfire-induced bankrupcy. The article published in The Seattle Times is PG&E bankruptcy could undermine utilities’ efforts against climate change. Excerpts below with my bolds.

Solar and wind developers depend on creditworthy utilities to buy electricity from their projects under long-term contracts, but that calculus changes in a world where a 30-year purchase agreement doesn’t guarantee 30 years of payments.

The Golden State has dramatically reduced planet-warming emissions from the electricity sector, largely by requiring utilities to increase their use of solar and wind power and fund energy-efficiency upgrades for homes and businesses. Lawmakers recently set a target of 100 percent climate-friendly electricity by 2045.

But those…

View original post 1,488 more words

Isles of Scilly “Smart” Energy Future To Come At Crippling Cost

NOT A LOT OF PEOPLE KNOW THAT

By Paul Homewood

h/t Chris

This was in the Telegraph a couple of months ago:

image

Remoteness need not preclude integration into the 21st century, as a case study at the 2018 Hitachi Social Innovation Forum in London today makes clear. The event, hosted by The Telegraph, brings together 350 global business leaders to explore how IoT (internet of things) technologies can transform communities and corporations.

The Isles of Scilly lie in the Atlantic Ocean about 30 miles off Land’s End in the far south west of mainland Britain. Average domestic electricity consumption in the islands is among the highest in the UK. There is no natural gas supply and locals rely on imported fossil fuels and electricity.

So the Isles of Scilly are fertile ground for Hitachi’s £10.8m Smart Energy Islands project, a scheme that is part-funded by the European Regional Development Fund and a collaboration with UK smart home…

View original post 639 more words

Can wind and solar replace fossil fuels?

Reblogged from Watts Up With That:

By Richard D. Patton

Statements implying that wind and solar can provide 50% of the power to the grid are not difficult to find on the internet. For example, Andrew Cuomo announced that

“The Clean Energy Standard will require 50 percent of New York’s electricity to come from renewable energy sources like wind and solar by 2030…”

Considering that the wind is erratic, and the solar cells only put out full power 6 hours per day, it seems a remarkable statement. Can intermittent energy actually supply that much power?

For some answers, we turn to Germany, which has some of the highest electric bills in the world as well as a high proportion of its electric power produced by wind and solar (19%). Let’s take a look at German consumption and generation.

clip_image002

As you can see, the power generation (black line), especially after 2011, has been rising, but the power consumption (blue line) has been falling slightly. The red line denotes dispatchable generation, i.e. all power generated except wind and solar. This includes nuclear, fossil, biomass, hydro and geothermal power.

The table below shows what happened more clearly.  [units = billion kwh]

2001 2011 2016
Consumption 520.2 546.2 536.5
Dispatchable 539.1 506.4 496.3
wind+solar 10.6 68.3 116.3
losses+export 29.5 28.5 76.1

Between 2001 and 2011, wind and solar generation rose 57.7 billion kwh. The difference of dispatchable minus consumption fell by 58.7 billion kwh. In this period, solar and wind were displacing dispatchable power. Germany chose to reduce its nuclear fleet in this period, so fossil fuel use (mostly coal) remained strong and Germany’s carbon footprint was not significantly reduced.

In the period from 2011-2016, Germany’s wind and solar generation increased by another 48 billion kwh, but the difference between dispatchable generation and consumption was essentially flat at around 40 billion kwh. Losses+export increased by 47.6 billion kwh to 76.1 billion kwh in 2016. This increase is due to exports of 49 billion kwh to other countries in 2016.

While nuclear power fell 20% from 2011 to 2016, the dispatchable non-fossil fuel (nuclear, hydro, biomass and geothermal) portion of power generation remained almost constant, as can be seen on this graph.

clip_image004

This left the German fossil fuel and the intermittent (wind + solar) portion of power generation.

clip_image006

In this period, wind and solar rose from 68 to 116 billion kwh, yet this rise of 48 billion kwh had no effect on the use of fossil fuels to generate power in Germany. During the period of 2011 to 2016, consumption fell by 10 billion kwh. Fossil fuel generation fell by 5 billion kwh, and non-fossil fuel dispatchable generation (nuclear, hydro, biomass and geothermal) also fell by 5 billion kwh. The increase in wind and solar (48 billion kwh) had no effect on fossil fuel use.

 

Stability Problems, an example

To the problems caused by intermittent power, let us examine German power usage on January 7-9, 2016.

 

clip_image008

This graph begins at start of January 7, which is a Thursday. The load line (black) shows low power usage. The spot price (orange, right-hand scale) is 25€/Mwh. The blue line is the sum of wind and solar power, and the red line is how much power is being exported.

The day starts and the load increases as people head to work. The spot price rises to 42 €/Mwh because the load is increasing. The wind picks up and the wind+solar line rises. It keeps rising throughout the day. As people go home and the work day ends, the spot price plummets to 12 €/Mwh because there are too many producers of electricity. To cushion the system, more power is exported.

The next day, the price rises in the morning but is still low (25€/Mwh) during the day due to high wind output. Around noon (hour 37) the wind power plummets. This is in the middle of the work day on Friday, so the load is high. Wind+solar was producing almost one-half of the power, but within four hours, approximately 15,000 Mw of power are taken out of the system while the system is near peak load. The spot price rises quickly to 47€/Mwh as the wind+solar power falls. The exports of power are reduced to cushion the system.

Notice that the exports move with the wind+solar power (positive correlation) and the spot price moves opposite to wind+solar power (negative correlation). The correlation coefficient of Germany’s wind and solar energy output and the exchanges with other countries in 2016 was r=0.503. The correlation between the spot price and the wind and solar generation is -.411.

Wind+solar underwent a nearly 6-fold increase in power over 30 hours, and the system must accommodate that power. Wind+solar then fell by 50% (25% of the load) in 4 hours. Exporting some of that power out of the system helps stabilize it. The spot price movements attract or repel other power producers to balance the system and prevent blackouts.

Despite these efforts, Germany is now plagued by blackouts. According to the (German) Federal Grid Agency (the Bundesnetzagentur), there are 172,000 power outages in Germany annually. This was reported by Hessen Public TV (HR). Previously, the German grid was impeccable.

After all of this effort, including patience are the part of the public in accepting these continual blackouts, Germany’s carbon footprint has barely budged. The CO2 emissions from coal and coke have only fallen 2% between 2011 and 2016, due to decreased consumption of electricity. The extra 48 billion kwh produced from wind and solar plants built between 2011 and 2016 was balanced by exports of 49 billion kwh in 2016. In terms of reducing Germany’s carbon footprint, the entire effort is a failure.

Apparently, there is a limit to how much intermittent power a grid can use before it becomes unstable. German wind and solar use maxed out in 2011 at around 68 billion kwh, or 12.5% of consumption. Back in the 90’s, engineering textbooks on wind were saying that people used to believe that wind could only supply about 10% of the power to the grid due to stability problems, but further studies showed that it could actually supply 30%. The real-life example of Germany shows that the engineers who said wind could only supply 10% of the power had a point.

It has not been proven that the NY Clean Energy Mandate (or similar mandates elsewhere) can be met by relying on wind and solar power. Given the example of Germany, doubts are in order. As advertised by its politicians, Germany gets 19% of its energy from wind and solar. What they do not say is that it also exports 1/3 of that energy out of country, leaving its carbon footprint unchanged since 2011. Some small countries, notably Denmark, have advertised that they get 50% or more of their energy from sun and wind. What they really mean is that they have a large country (in the case of Denmark, Germany) next to them absorbing that power and selling them power when the wind stops blowing and the sun goes down. Because it is a small country selling into a big market, its energy sales do not disturb the grid stability of the bigger market. It is a much different case when the larger country (Germany) tries it. Germany’s attempt, the Energiewende (energy transition), is widely judged to have been a failure. If New York goes down that path, it is not likely to do much better.

Sources

Andrew Cuomo 50% announcement

https://www.governor.ny.gov/news/governor-cuomo-announces-establishment-clean-energy-standard-mandates-50-percent-renewables

 

Data for graphs were sourced from the US Energy Information Administration (EIA). Unfortunately, this is a beta site, but there was no other link to international data.

The EIA website has generation and consumption figures for every country for the years 1980-2016.

The link for German electricity generation (including different sources – wind, fossil fuel, etc.) is:

https://www.eia.gov/beta/international/data/browser/#/?pa=00000000000000000000000000000fvu&c=ruvvvvvfvtujvv1urvvvvfvvvvvvfvvvou20evvvvvvvvvnvvuvs&ct=0&tl_id=2-A&vs=INTL.2-12-AFG-BKWH.A&ord=CR&vo=0&v=H&end=2016

The link for German electricity consumption is:

https://www.eia.gov/beta/international/data/browser/#/?pa=0000002&c=ruvvvvvfvtujvv1urvvvvfvvvvvvfvvvou20evvvvvvvvvnvvuvs&ct=0&tl_id=2-A&vs=INTL.2-2-AFG-BKWH.A&vo=0&v=H&end=2016

The correlation coefficients were calculated from hourly European data compiled by P. F. Bach. He did those same calculations and sent them to me in a personal communication; the numbers matched. Here is the download link to his website.

http://www.pfbach.dk/firma_pfb/time_series/ts.php

He got the data from Entso-e, a platform showing power genraton, consumption and transmission in Europe. Its website is here, and registration is free:

https://transparency.entsoe.eu/transmission-domain/physicalFlow/show

The power outages data are from no tricks zone. Pierre Gosslin, who runs it, usually has interesting facts about Germany. Here is the link to that:

http://notrickszone.com/2017/12/01/germanys-national-power-grid-mess-country-seeing-whopping-172000-power-outages-annually/

The links to German TV from that article do not work.

Also, from no tricks zone, a report form ARD TV in Germany.

http://notrickszone.com/2018/01/26/unstable-green-power-grids-german-ard-television-tells-citizens-to-start-getting-used-to-blackouts/#sthash.rvUw5X6k.PzjU81fG.dpbs

The link from that article to ARD TV is available below

https://www.ardmediathek.de/ard/player/Y3JpZDovL2Rhc2Vyc3RlLmRlL3BsdXNtaW51cy81MWU3M2MwYy0wYjljLTQ4MTgtYTk0My1lZmJiZGIzMGU5YmI/

My German is very poor, but the show said 473/day or 172,645/year. Also, the show linked the stability problems to storms and wind power. In other words, wind power was specifically called out for Germany’s stability problems.

Renewables Aren’t Making Much Headway

sunshine hours

World consumption of primary energy 2017

And don’t forget: Wood and wood products accounted for almost half (45 %) of the EU’s gross inland energy consumption of renewables in 2016.

View original post

Germany’s Green Transition has Hit a Brick Wall

Sierra Foothill Commentary

Guest Blogger at Watts Up With That

Even worse, its growing problems with wind and solar spell trouble all over the globe.

Editor: As the Progressive Democrats force California to depend on Green Power their mistaken environmental dreams will hit the same wall that is described in this post.

Oddvar Lundseng, Hans Johnsen and Stein Bergsmark

More people are finally beginning to realize that supplying the world with sufficient, stable energy solely from sun and wind power will be impossible.

Germany took on that challenge, to show the world how to build a society based entirely on “green, renewable” energy. It has now hit a brick wall. Despite huge investments in wind, solar and biofuel energy production capacity, Germany has not reduced CO2 emissions over the last ten years. However, during the same period, its electricity prices have risen dramatically, significantly impacting factories, employment and poor families.

Germany has installed…

View original post 1,253 more words

%d bloggers like this: