10 fallacies about Arctic sea ice & polar bear survival: teachers & parents take note

polarbearscience

Summer sea ice loss is finally ramping up: first year is disappearing, as it has done every year since ice came to the Arctic millions of years ago. But critical misconceptions, fallacies, and disinformation abound regarding Arctic sea ice and polar bear survival. Ahead of Arctic Sea Ice Day (15 July), here are 10 fallacies that teachers and parents especially need to know about.

Polar_Bear_Summer_2 FINAL (2)

The cartoon above was done by Josh: you can drop off the price of a beer (or more) for his efforts here.

As always, please contact me if you would like to examine any of the references included in this post. These references are what make my efforts different from the activist organization Polar Bears International. PBI virtually never provide references within the content it provides, including material it presents as ‘educational’. Links to previous posts of mine that provide expanded explanations, images, and…

View original post 3,839 more words

A Sunspot from the Next Solar Cycle

Spaceweather.com

July 8, 2019: Solar Cycle 25 is coming to life. For the second time this month, a sunspot from the next solar cycle has emerged in the sun’s southern hemisphere. Numbered “AR2744”, it is inset in this magnetic map of the sun’s surface from NASA’s Solar Dynamics Observatory:

How do we know this sunspot belongs to Solar Cycle 25? Its magnetic polarity tells us so. Southern sunspots from old Solar Cycle 24 have a -/+ polarity. This sunspot is the opposite: +/-. According to Hale’s Law, sunspots switch polarities from one solar cycle to the next. AR2744 is therefore a member of Solar Cycle 25.

Solar cycles always mix together at their boundaries. Right now we are experiencing the tail end of decaying Solar Cycle 24. AR2744 shows that we are simultaneously experiencing the first stirrings of Solar Cycle 25. The transition between Solar Cycle 24 and Solar Cycle…

View original post 124 more words

N. Atlantic Staying Cool

Science Matters

RAPID Array measuring North Atlantic SSTs.

For the last few years, observers have been speculating about when the North Atlantic will start the next phase shift from warm to cold. Given the way 2018 went and 2019 is following, this may be the onset.  First some background.

. Source: Energy and Education Canada

An example is this report in May 2015 The Atlantic is entering a cool phase that will change the world’s weather by Gerald McCarthy and Evan Haigh of the RAPID Atlantic monitoring project. Excerpts in italics with my bolds.

This is known as the Atlantic Multidecadal Oscillation (AMO), and the transition between its positive and negative phases can be very rapid. For example, Atlantic temperatures declined by 0.1ºC per decade from the 1940s to the 1970s. By comparison, global surface warming is estimated at 0.5ºC per century – a rate twice as slow.

In many parts…

View original post 686 more words

Leftist Agenda and Climate Change Linked by Indoctrination Tactics

PA Pundits International

Why is the same age group that helped to tear down the Iron Curtain now advocating for policies that would reduce freedoms? ~

Joe Bastardi ~    

As a meteorologist in the private sector, wherein success is largely determined by forecasting skill, I cannot afford to be wrong. I was taught that studying the past helps one predict the future. This is the origin of my involvement in the climate debate, since the “worst ever” bloviating we see today can easily be challenged through examination of the past.

My politics are simple. I believe one should have as much freedom as possible to enjoy life, liberty, and pursue happiness. In my opinion, the role of government is to establish standards to maximize these freedoms. I assume no one has anything against life, liberty, and the pursuit of happiness. I also assume there is a large population of young people…

View original post 677 more words

Himalayan Glaciers–The Story The BBC Refuse To Tell You

NOT A LOT OF PEOPLE KNOW THAT

By Paul Homewood

image

Images from Cold War spy satellites have revealed the dramatic extent of ice loss in the Himalayan glaciers.

Scientists compared photographs taken by a US reconnaissance programme with recent spacecraft observations and found that melting in the region has doubled over the last 40 years.

The study shows that since 2000, glaciers heights have been shrinking by an average of 0.5m per year.

The researchers say that climate change is the main cause.

“From this study, we really see the clearest picture yet of how Himalayan glaciers have changed,” Joshua Maurer, from Columbia University’s Lamont-Doherty Earth Observatory in New York, told BBC News.

https://www.bbc.co.uk/news/science-environment-48696023

As usual the BBC fail to explain the wider picture.

View original post 503 more words

The Setup is like 1315

Reblogged from Watts Up With That:

Guest Commentary by David Archibald

The area planted for corn and soybeans this season is well below historic averages. This was mostly due to waterlogged fields and flooding which precluded planting. The planting windows for corn and soybeans are now closed. The USDA crop progress reports provide weekly updates by state. For example this is the state of the corn crop in Indiana to Monday June 17:

clip_image002

Figure 1: Indiana corn crop progress to Monday June 17.

The emerged crop is one month behind where it was in 2018. Which means that maturity will be one month later at best, assuming that the rest of the summer isn’t abnormally cold.

Figure 2 shows that the same situation in soybeans in Indiana:

clip_image004

Figure 2: Indiana soybean crop progress to Monday June 17.

The current expectation is that the US corn crop will be down 30% on 2018 which will push the price to about $9.00 per bushel at harvest. What could make the situation a lot worse is an early frost. The Corn Belt did warm slightly over the last 100 years due to the high solar activity of the second half of the 20th century. This is shown by the cumulative growing degree days (GDD) of the first decade of the 20th century (blue lines) compared to the first decade of the 21st century (red lines) in Figure 3 for Whitestown, Indiana:

clip_image006

Figure 3: Cumulative GDD for Whitestown, Indiana

Normally, for the 21st century, the corn crop is in the ground by April 27 and the crop has reached maturity with 2,500 GDD well before the normal first frost date for Whitestown of October 10. The earliest recorded date for Whitestown is September 3. That was in 1908. If that is repeated in 2019 the crop will be only 80% through its growth cycle. Yield and quality will be well down and the total crop may be 50% or less of the 2018 level.

The US will be able to feed itself but at much higher prices. Currently some 40% of the corn crop goes to ethanol production and this could be redirected to animal feed without too much trouble. But protein production would still be well down. Each 56 lb bushel of corn used in ethanol production results in 18 lbs of dried distillers grains (DDG) containing the protein. This is used as a feed supplement to pigs, chickens and cattle. Both pigs and chickens have a 25% conversion efficiency of vegetable protein to animal protein. The global warmers want us to adopt vegetarianism in order to save the planet. The public is going to get a taste of that future coming up soon. However animal fat is essential for infant neurological development and brain function so we can’t go completely vegetarian.

What is happening in the Corn Belt is a mini version of the transition from the Medieval Warm Period to the Little Ice Age. The population of Europe exploded in benign conditions of the Medieval Warm Period from 1000 AD to 1300 AD, reaching population levels that weren’t matched again until the 19th century. In fact parts of rural France have less population today than at the beginning of the 14th century.

The breakover from the Medieval Warm Period to the Little Ice Age in Europe had sustained periods of bad weather characterised by severe winters and rainy and cold summers. The Great Famine of 1315 – 1317 started with bad weather in the spring of 1315. Crop failures lasted through 1316 until the summer of 1317. The population decline over the two years is thought to be about 10%, associated with “extreme levels of crime, disease, mass death, cannibalism and infanticide.” These conditions may be less in the Mormons amongst us who are instructed to keep one year’s worth of food in stock.

The Modern Warm Period ended in 2006. Current solar activity is back to levels of the Little Ice Age. To paraphrase Santayana, those who don’t remember history are condemned to being surprised and unprepared when it repeats itself.

A large and increasing number of nations are feeding their population growth with imported grain. That is going to be become more expensive to continue, with or without an early frost in the Corn Belt. Global warming hysteria has been a consequence of very benign conditions for the OECD countries where it is concentrated. That angst will be supplanted by more basic concerns.

David Archibald is the author of American Gripen: The Solution to the F-35 Nightmare

 

Ice Melting In Greenland? That’s What It Does In Summer!

NOT A LOT OF PEOPLE KNOW THAT

By Paul Homewood

h/t Joe Public

I’ve been away cycling in Norfolk for the last few days, even though it was apparently shut!

While away, this familiarly hysterical story appeared in the “Independent”:

image

An extraordinary photograph of huskies pulling sleds through ankle-deep meltwaters on top of an ice sheet in Greenland has brought attention to the uncharacteristically warm temperatures affecting the Arctic.

Danish climatologist Steffen M Olsen took the picture on 13 June while on a routine mission through the Inglefield Gulf in northwest Greenland.

The rapidly melting ice caused difficult and dangerous conditions for the team of climatologists who were retrieving weather station equipment from the area.

The thin layer of water was standing on top of an ice sheet around 1.2 metres deep, Dr Olsen said on Twitter.

“We know the ice is around 1.2m thick and that we have about 870m [of] water below us…

View original post 540 more words

A Second Look At Radiation Versus Temperature

Reblogged from Watts Up With That:

Guest Post by Willis Eschenbach [See Update at end]

I kept going back and looking at the graphic from my previous post on radiation and temperature. It kept niggling at me. It shows the change in surface temperature compared to the contemporaneous change in how much energy the surface is absorbing. Here’s that graphic again:

Figure 1. From my previous post. It is a scatterplot showing the dependence of temperature on the total downwelling radiation (longwave plus shortwave) absorbed by the surface.

What I found botheracious were the outliers at the top of the diagram. I knew what they were from, which was the El Nino/La Nina of 2015-2016.

After thinking about that, I realized I’d left one factor out of the calculations above. What the El Nino phenomenon does is to periodically pump billions of cubic meters of the warmest Pacific equatorial water towards the poles. And I’d left that advected energy transfer out of the equation in Figure 1. (Horizontal transfer of energy from one place on earth to another is called “advection”).

And it’s not just advection of energy caused by El Nino. In general, heat is advected from the tropics towards the poles by the action of the ocean and the atmosphere. Figure 2 shows the average amount of energy exported (plus) or imported (minus) around the globe.

Figure 2. Net energy exported or imported by each 1° latitude by 1° longitude gridcell. The amount of the imbalance is calculated as the top of atmosphere (TOA) energy imbalance (downwelling solar minus upwelling longwave and reflected solar)

If there is no advection of energy, which occurs at the white line in Figure 2, then solar entering the system equals energy leaving to space. Figure 2 shows how the tropics absorbs much more than it is radiating. The difference is the energy transferred polewards.

As you can see above, the strongest energy export is from the tropical Pacific. And on the other hand, the most energy is imported into the Arctic. The Arctic receives more than the Antarctic because the entire Arctic Ocean is getting advected energy in the form of warm water moved up from the tropics. Antarctica, on the other hand, is only strongly warmed along the edges, with the interior receiving less energy.

Now, having that advection data allows me to make a better calculation of the relationship between surface energy absorption and temperature change. To do that, I simply adjusted the energy received by each gridcell in the prior calculation (Figure 1) according to the amount of energy that that gridcell either imported or exported. Figure 3 shows that result.

Figure 3. Scatterplot of surface temperature versus the sum of surface downwelling longwave and shortwave energy, plus or minus the amount of energy advected.

This is an interesting result. Note that the outliers from the El Nino phenomenon seen in Figure 1 are now much closer to the trend line. And the same is true for the outliers at the bottom left of Figure 1. (Statistically, this is reflected in an improvement in the R^2 value from 0.72 in Figure 1, to 0.78 after adjusting for advected energy as shown in Figure 3 .)

I note also that the trend in Figure 3 (0.39°C per 3.7 W/m2) is virtually identical to the 0.38 trend seen in Figure 1. Since the amount of energy exported is equal to the amount of energy imported, we’d expect the errors from ignoring advection to be symmetrical. I take the lack of change in the trend as support for the idea that some amount of the errors in Figure 1 were indeed due to ignoring advection.

[UPDATE] As in my previous post, I’ve compared the results to those we get using the HadCRUT temperature dataset in place of the CERES dataset. First, here is the previous comparison:

Figure 4. As in Figure 1 above, showing results without advected energy, but using the HadCRUT surface temperature dataset.

Note that as with the CERES dataset, the high values are from the El Nino phenomenon. Now, compare Figure 4 to Figure 5 below, which includes the advected energy.

Figure 5. As in Figure 4, but including the advected energy.

In a very similar manner to the CERES data, including the advected energy brings the El Nino data much closer to the trend line. In addition, as with CERES data, the trend is unchanged by the advected energy.

Incremental improvements …

Me, I’m working at finishing out the interior of a friend’s house on the Kenai River in Alaska, so my response time to the comments may be longer.

Best to all and sundry … and if “all” is really all, then what is “sundry”?

5 Million years of cooling

Reblogged from Clive Best:

Why did the earth cool ~6C during the Pleistocene resulting in the current deep ~100 Ky glacial cycles? The most probable cause  is plate tectonics – the opening of the Atlantic and continuing rise of the Himalayas after India collided with Asia. Less well known though is the increasing height of the Andes, Greenland and Western US as shown below. All  data are from the PaleoDEM project

an alternative view of this is though contour plots

We can quantify the net change in land topography by calculating the surface area of the earth above a certain height. This shows that over the last 5 million years there has been an increase in land surfaces above 3000m altitude by 5.4 million square km. That figure represents a net global increase of 56% in such high altitude land masses. This land movement is concentrated in the Himalayas, the western coasts of America and Greenland. These last two extend into high latitudes where changes in albedo are important. So how might this affect this global climate?

1. High altitudes are colder simply due to the fall in temperature with lapse rate. Above 3000m is something like 20C colder than at sea level.  Moisture falls as snow and glaciers develop.

2. A 50% increase in glaciated areas increases global albedo thereby reducing net incoming solar radiation slightly, which I estimate at about 0.5% or up to 2W/M2.  Perhaps just as important a result is that Milankovitch orbital forcing gets amplified as more land remains permanently glaciated at higher latitudes. This amplification effect is evident in the Ice Volume data.

 

LR4-768x452

When did Antarctica become permanently ice covered? Prior to 2.5My ago the “West Antarctic Ice Sheet and Antarctic Peninsula Ice Sheets together grew successively larger, with periodic collapses during interglacials. During periods of West Antarctic Ice Sheet absence, the Antarctic Peninsula Ice Sheet remained as a series of island ice caps” (source). This might also explain why initially glacial cycles followed the obliquity cycle since NH insolation and SH insolation are out of phase. Changes in Ice volume partially cancel if Antarctica also contributes to sea levels due to land based melt-back. In this case the MPT (Mid Pleistocene Transition) may represent the end of this cancelation effect  and the start  of NH dominance.