Half of 21st Century Warming Due to El Nino

Reblogged from Dr.RoySpencer.com  [HiFast bold]

May 13th, 2019 by Roy W. Spencer, Ph. D.

A major uncertainty in figuring out how much of recent warming has been human-caused is knowing how much nature has caused. The IPCC is quite sure that nature is responsible for less than half of the warming since the mid-1900s, but politicians, activists, and various green energy pundits go even further, behaving as if warming is 100% human-caused.

The fact is we really don’t understand the causes of natural climate change on the time scale of an individual lifetime, although theories abound. For example, there is plenty of evidence that the Little Ice Age was real, and so some of the warming over the last 150 years (especially prior to 1940) was natural — but how much?

The answer makes as huge difference to energy policy. If global warming is only 50% as large as is predicted by the IPCC (which would make it only 20% of the problem portrayed by the media and politicians), then the immense cost of renewable energy can be avoided until we have new cost-competitive energy technologies.

The recently published paper Recent Global Warming as Confirmed by AIRS used 15 years of infrared satellite data to obtain a rather strong global surface warming trend of +0.24 C/decade. Objections have been made to that study by me (e.g. here) and others, not the least of which is the fact that the 2003-2017 period addressed had a record warm El Nino near the end (2015-16), which means the computed warming trend over that period is not entirely human-caused warming.

If we look at the warming over the 19-year period 2000-2018, we see the record El Nino event during 2015-16 (all monthly anomalies are relative to the 2001-2017 average seasonal cycle):

21st-century-warming-2000-2018-550x733
Fig. 1. 21st Century global-average temperature trends (top) averaged across all CMIP5 climate models (gray), HadCRUT4 observations (green), and UAH tropospheric temperature (purple). The Multivariate ENSO Index (MEI, bottom) shows the upward trend in El Nino activity over the same period, which causes a natural enhancement of the observed warming trend.

We also see that the average of all of the CMIP5 models’ surface temperature trend projections (in which natural variability in the many models is averaged out) has a warmer trend than the observations, despite the trend-enhancing effect of the 2015-16 El Nino event.

So, how much of an influence did that warm event have on the computed trends? The simplest way to address that is to use only the data before that event. To be somewhat objective about it, we can take the period over which there is no trend in El Nino (and La Nina) activity, which happens to be 2000 through June, 2015 (15.5 years):

21st-century-warming-2000-2015.5-550x733
Fig. 2. As in Fig. 1, but for the 15.5 year period 2000 to June 2015, which is the period over which there was no trend in El Nino and La Nina activity.

Note that the observed trend in HadCRUT4 surface temperatures is nearly cut in half compared to the CMIP5 model average warming over the same period, and the UAH tropospheric temperature trend is almost zero.

One might wonder why the UAH LT trend is so low for this period, even though in Fig. 1 it is not that far below the surface temperature observations (+0.12 C/decade versus +0.16 C/decade for the full period through 2018). So, I examined the RSS version of LT for 2000 through June 2015, which had a +0.10 C/decade trend. For a more apples-to-apples comparison, the CMIP5 surface-to-500 hPa layer average temperature averaged across all models is +0.20 C/decade, so even RSS LT (which usually has a warmer trend than UAH LT) has only one-half the warming trend as the average CMIP5 model during this period.

So, once again, we see that the observed rate of warming — when we ignore the natural fluctuations in the climate system (which, along with severe weather events dominate “climate change” news) — is only about one-half of that projected by climate models at this point in the 21st Century. This fraction is consistent with the global energy budget study of Lewis & Curry (2018) which analyzed 100 years of global temperatures and ocean heat content changes, and also found that the climate system is only about 1/2 as sensitive to increasing CO2 as climate models assume.

It will be interesting to see if the new climate model assessment (CMIP6) produces warming more in line with the observations. From what I have heard so far, this appears unlikely. If history is any guide, this means the observations will continue to need adjustments to fit the models, rather than the other way around.

Advertisements

Fake climate science and scientists

Reblogged from Watts Up With That:

Alarmists game the system to enrich and empower themselves, and hurt everyone else

by Paul Driessen

The multi-colored placard in front of a $2-million home in North Center Chicago proudly proclaimed, “In this house we believe: No human is illegal” – and “Science is real” (plus a few other liberal mantras).

I knew right away where the owners stood on climate change, and other hot-button political issues. They would likely tolerate no dissension or debate on “settled” climate science or any of the other topics.

But they have it exactly backward on the science issue. Real science is not belief – or consensus, 97% or otherwise. Real science constantly asks questions, expresses skepticism, reexamines hypotheses and evidence. If debate, skepticism and empirical evidence are prohibited – it’s pseudo-science, at best.

Real science – and real scientists – seek to understand natural phenomena and processes. They pose hypotheses that they think best explain what they have witnessed, then test them against actual evidence, observations and experimental data. If the hypotheses (and predictions based on them) are borne out by their subsequent findings, the hypotheses become theories, rules, laws of nature – at least until someone finds new evidence that pokes holes in their assessments, or devises better explanations.

Real science does not involve simply declaring that you “believe” something, It’s not immutable doctrine. It doesn’t claim “science is real” – or demand that a particular scientific explanation be carved in stone. Earth-centric concepts gave way to a sun-centered solar system. Miasma disease beliefs surrendered to the germ theory. The certainty that continents are locked in place was replaced by plate tectonics (and the realization that you can’t stop continental drift, any more than you stop climate change).

Real scientists often employ computers to analyze data more quickly and accurately, depict or model complex natural systems, or forecast future events or conditions. But they test their models against real-world evidence. If the models, observations and predictions don’t match up, real scientists modify or discard the models, and the hypotheses behind them. They engage in robust discussion and debate.

They don’t let models or hypotheses become substitutes for real-world evidence and observations. They don’t alter or “homogenize” raw or historic data to make it look like the models actually work. They don’t hide their data and computer algorithms (AlGoreRythms?), restrict peer review to closed circles of like-minded colleagues who protect one another’s reputations and funding, claim “the debate is over,” or try to silence anyone who dares to ask inconvenient questions or find fault with their claims and models. They don’t concoct hockey stick temperature graphs that can be replicated by plugging in random numbers.

In the realm contemplated by the Chicago yard sign, we ought to be doing all we can to understand Earth’s highly complex, largely chaotic, frequently changing climate system – all we can to figure out how the sun and other powerful forces interact with each other. Only in that way can we accurately predict future climate changes, prepare for them, and not waste money and resources chasing goblins.

But instead, we have people in white lab coats masquerading as real scientists. They’re doing what I just explained true scientists don’t do. They also ignore fluctuations in solar energy output and numerous other powerful, interconnected natural forces that have driven climate change throughout Earth’s history. They look only (or 97% of the time) at carbon dioxide as the principle or sole driving force behind current and future climate changes – and blame every weather event, fire and walrus death on manmade CO2.

Even worse, they let their biases drive their research and use their pseudo-science to justify demands that we eliminate all fossil fuel use, and all carbon dioxide and methane emissions, by little more than a decade from now. Otherwise, they claim, we will bring unprecedented cataclysms to people and planet.

Not surprisingly, their bad behavior is applauded, funded and employed by politicians, environmentalists, journalists, celebrities, corporate executives, billionaires and others who have their own axes to grind, their own egos to inflate – and their intense desire to profit from climate alarmism and pseudo-science.

Worst of all, while they get rich and famous, their immoral actions impoverish billions and kill millions, by depriving them of the affordable, reliable fossil fuel energy that powers modern societies.

And still these slippery characters endlessly repeat the tired trope that they “believe in science” – and anyone who doesn’t agree to “keep fossil fuels in the ground” to stop climate change is a “science denier.”

When these folks and the yard sign crowd brandish the term “science,” political analyst Robert Tracinski suggests, it is primarily to “provide a badge of tribal identity” – while ironically demonstrating that they have no real understanding of or interest in “the guiding principles of actual science.”

Genuine climate scientist (and former chair of the School of Earth and Atmospheric Sciences at the Georgia Institute of Technology) Dr. Judith Curry echoes Tracinski. Politicians like Senator Elizabeth Warren use “science” as a way of “declaring belief in a proposition which is outside their knowledge and which they do not understand…. The purpose of the trope is to bypass any meaningful discussion of these separate questions, rolling them all into one package deal – and one political party ticket,” she explains.

The ultimate purpose of all this, of course, is to silence the dissenting voices of evidence- and reality-based climate science, block creation of a Presidential Committee on Climate Science, and ensure that the only debate is over which actions to take first to end fossil fuel use … and upend modern economies.

The last thing fake/alarmist climate scientists want is a full-throated debate with real climate scientists – a debate that forces them to defend their doomsday assertions, methodologies, data manipulation … and claims that solar and other powerful natural forces are minuscule or irrelevant compared to manmade carbon dioxide that constitutes less that 0.02% of Earth’s atmosphere (natural CO2 adds another 0.02%).

Thankfully, there are many reasons for hope. For recognizing that we do not face a climate crisis, much less threats to our very existence. For realizing there is no need to subject ourselves to punitive carbon taxes or the misery, poverty, deprivation, disease and death that banning fossil fuels would cause.

Between the peak of the great global cooling scare in 1975 until around 1998, atmospheric carbon dioxide levels and temperatures did rise in rough conjunction. But then temperatures mostly flat-lined, while CO2 levels kept climbing. Now actual average global temperatures are already 1 degree F below the Garbage In-Garbage Out computer model predictions. Other alarmist forecasts are also out of touch with reality.

Instead of fearing rising CO2, we should thank it for making crop, forest and grassland plants grow faster and better, benefitting nature and humanity – especially in conjunction with slightly warmer temperatures that extend growing seasons, expand arable land and increase crop production.

The rate of sea level rise has not changed for over a century – and much of what alarmists attribute to climate change and rising seas is actually due to land subsidence and other factors.

Weather is not becoming more extreme. In fact, Harvey was the first Category 3-5 hurricane to make US landfall in a record 12 years – and the number of violent F3 to F5 tornadoes has fallen from an average of 56 per year from 1950 to 1985 to only 34 per year since then.

Human ingenuity and adaptability have enabled humans to survive and thrive in all sorts of climates, even during our far more primitive past. Allowed to use our brains, fossil fuels and technologies, we will deal just fine with whatever climate changes might confront us in the future. (Of course, another nature-driven Pleistocene-style glacier pulling 400 feet of water out of our oceans and crushing Northern Hemisphere forests and cities under mile-high walls of ice truly would be an existential threat to life as we know it.)

So if NYC Mayor Bill De Blasio and other egotistical grand-standing politicians and fake climate scientists want to ban fossil fuels, glass-and-steel buildings, cows and even hotdogs – in the name of preventing “dangerous manmade climate change” – let them impose their schemes on themselves and their own families. The rest of us are tired of being made guinea pigs in their fake-science experiments.

Paul Driessen is senior policy advisor for the Committee For A Constructive Tomorrow (CFACT) and author of articles and books on energy, environmental and human rights issues.

Basic Science: 4 Keys to Melt Fears About Ice Sheets Melting

Reblogged from Watts Up With That:

William Ward, April 18, 2019


[HiFast BLUF:  Here’s the author’s summary/bottom line up front.] Despite the overwhelming number of popular news reports to the contrary, studies of ice sheets melting over the past century show remarkable ice stability. Using the proper scientific perspective, analysis of ice-melt rates and ice-mass losses show the ice sheets will take hundreds of thousands of years to melt, assuming the next glacial period doesn’t start first. An application of basic physics shows that for every 1 °C of atmospheric heat exchanged with the ice sheets we get a maximum 0.4 inches of SLR and a correspondingly cooler atmosphere. Over the 20th century, we observed a worst-case 4:1 ratio of consumed heat to retained atmospheric heat. It is proposed that this ratio can be used to assess potential ice-melt related SLR for a hypothetical atmospheric temperature increase scenario over the current century. Using a reasonable range for all of the variables we can estimate an SLR of between 1.4 – 6.4 inches, but our current observations support the rise being toward the lower end of that range.

The atmosphere and oceans do not show the increase in energy necessary to cause catastrophic SLR from rapidly melting ice. Humankind does not possess the technology to melt a significant amount of ice because the energy required is enormous and only nature can meter out this energy over very long periods. With the proper scientific perspective about the amount of energy required to melt ice, it should be much more difficult for Climate Alarmists to scare the public with scenarios not supported by basic science.


 

The world is drowning in articles about catastrophic sea level rise (SLR), reminding us that if the ice sheets melt, 260 feet of water will flood our coastal cities. We know that sea level today is 20-30 feet lower than it was at the end of the last interglacial period 120,000 years ago. We also know that sea level has risen 430 feet since the end of the last glacial maximum 22,000 years ago. Research shows this rise was not monotonic but oscillatory, and during periods over the past 10,000 years, sea level has been several meters higher than today. So, evidence supports the possibility of higher sea levels, but does the evidence support the possibility of catastrophic sea level rise from rapidly melting ice?

In this paper, basic science is used to show that catastrophic SLR from melting ice cannot happen naturally over a short period. Additionally, humankind does not possess the capability to melt a large amount of ice quickly even through our most advanced technology. This news should relieve the public, which is routinely deceived by reporting that misrepresents the facts. The public is susceptible to unnecessary alarmism when melt rates and ice-melt masses are presented without perspective and juxtaposed against claims that scientists are worried. This paper uses the same facts but places them in perspective to show that catastrophic risks do not exist.

Ice Sheets Melting: Deceptive Reporting

The growing alarm over melting ice sheets is directly attributable to deceptive reporting. The sheer number of reports inundates the public with an incessant message of angst. A single scientific study can be the source for headlines in hundreds of news articles. With social media repeating the news and the subsequent chorus of lectures from celebrities and politicians, we find ourselves in the deafening echo chamber of Climate Alarmism. However, it is a mistake to assume the real risks are proportional to the frequency or intensity of the message.

The primary problem is that the news writers do not have the scientific background to report on the subject responsibly, and therefore they routinely corrupt and distort the facts. Take for example an article in Smithsonian dated September 1, 2016, entitled “Melting Glaciers Are Wreaking Havoc on Earth’s Crust.” The first two sentences of the article read:

“You’ve no doubt by now been inundated with the threat of global sea level rise. At the current estimated rate of one-tenth of an inch each year, sea level rise could cause large swaths of cities like New York, Galveston and Norfolk to disappear underwater in the next 20 years.”

A sea level rise rate of one-tenth of an inch per year yields 2 inches of SLR in 20 years. Topographical maps show the lowest elevations of these cities are more than ten feet above sea level. No portion of these cities will disappear underwater from 2 inches of SLR.

The news writers seem obligated to pepper the facts with their own opinions such as “… climate change is real, undeniable and caused by humans.” It is often difficult for the reader to discern the facts from the opinions. However, even the facts become troubling because they consist of numbers without the perspective to understand their significance and are wrapped in existential angst. Consider the following excerpt from a June 13, 2018 article in the Washington Post, entitled “Antarctic ice loss has tripled in a decade. If that continues, we are in serious trouble.”

“Antarctica’s ice sheet is melting at a rapidly increasing rate, now pouring more than 200 billion tons of ice into the ocean annually and raising sea levels a half-millimeter every year, a team of 80 scientists reported… The melt rate in Antarctica has tripled in the past decade, the study concluded. If the acceleration continues, some of scientists’ worst fears about rising oceans could be realized, leaving low-lying cities and communities with less time to prepare than they had hoped.”

As reported, the reader assumes a melt rate that has tripled must be dire, and billions of tons of melting ice must be extreme. However, this perception changes if the facts are analyzed to provide perspective. An analysis shows that the original annual melt rate of 1.3 parts-per-million (ppm) has increased to nearly 4 ppm over 26 years. The news writer failed to inform us of these facts which provide perspective. The new melt rate is analogous to losing 4 dollars out of 1 million dollars. Losing slightly less than 4 parts in 1 million each year means that it will take over 250,000 years to melt entirely. No natural process is static, so we should expect variation over time. Most change is cyclical. Sometimes the ice is increasing and sometimes it is decreasing. The average person’s body mass fluctuates by 20,000 to 40,000 ppm each day. By comparison, Antarctica varying by 1-4 ppm over a year should be considered rock-solid stability in the natural world.

Ice Sheets Melting: What Happened Over the Past Century

Antarctica holds 91% of the world’s land ice, Greenland 8%, and the remaining 1% is spread over the rest of the world. Therefore, by understanding what is happening to the ice sheets in Antarctica and Greenland, we understand what is happening to 99% of the world’s land ice.

NASA is a good source for research about what is happening in Antarctica. However, two NASA agencies have recently published studies with conflicting conclusions. The Goddard Space Flight Center recently published research concluding Antarctica is not contributing to SLR. According to the study, snow accumulation exceeded ice melting, resulting in a 0.5-inch sea level reduction since 1900. Contrarily, the Jet Propulsion Laboratory (JPL) reports that the rate of Ice loss from Antarctica has tripled since 2012 and contributed 0.3 inches to SLR between 1992 and 2017. To cover the worst-case scenario, we can analyze the JPL study and provide the perspective to understand their results.

Over 26 years, Antarctica’s average annual mass loss was less than 0.00040% of its total. If Antarctica were a 220 lb man, his mass loss each year would be 0.4 grams or about eight tears. (Eight human tears weigh about 0.4 g.) At this alarming rate that makes our most elite climate scientists worried, it would take 250,185 years to melt all of the ice. It would take over 1,000 years of melting to yield 12 inches of SLR from Antarctica if we ignore natural variability and the cyclical nature of ice volume and assume the melt rate continues uninterrupted.

The best information we have about Greenland comes from a study in the journal Nature, estimating Greenland’s ice losses between 1900 – 2010. Using current ice volume estimates from USGS, we calculate the ice mass in 2010 was between 99.5% – 99.8% of what it was in 1900. Ice melt from Greenland in the 111 years contributed 0.6 – 1.3 inches to SLR. It would take over 1,300 years of melting to yield 12 inches of SLR from Greenland if we ignore natural variability and the cyclical nature of ice volume and assume the melt rate continues uninterrupted.

The average annual inland temperature in Antarctica is -57 °C and most coastal stations average -5 °C to -15 °C. The much talked about Western Antarctica averages several degrees below 0 °C. Southern Greenland does experience summer temperatures above 0 °C and seasonal melting. Northern Greenland stays below 0 °C even in the summer months, and the average annual inland temperatures are -20 °C to -30 °C. The temperatures in Greenland and Antarctica are not warm enough to support significant rapid ice melt. In the past century, we have 1 °C of retained atmospheric heat, and enough heat exchanged with ice in Greenland and Antarctica to raise sea level by 0.9 – 1.6 inches. Despite all of the reports in the media to the contrary, we have no real observations of any ice melt crisis. The past 111 years have been remarkable because of ice stability – not because of ice melting. We are 19 years into the 21st century with no evidence supporting an outcome much different from the 20th century.

Ice Sheets Melting: The Process

The lifecycle of an ice sheet begins as snow. Snow falls in the higher elevations and over time it compacts and becomes ice. The ice thickness in Antarctica is over 12,000 feet in the center of the continent and over 9,000 feet over most of East Antarctica. The force of gravity initiates a thousand-year journey where the ice flows from its heights back to the sea. At the end of this journey, when its weight can no longer be supported by the sea, it “calves” and becomes an iceberg. Some icebergs can float around Antarctica for over 30 years before fully melting. So, young ice is born inland from snow, and old ice dies near the coast from seasonal melting or after drifting for years as an iceberg. This process is the natural cycle of ice and not one which should create panic. During some periods we have more snow accumulating than ice melting, such as the period between 1300 CE and 1850 CE, known as the “Little Ice Age.” During other periods we have more ice melting than snow accumulating, such as the Medieval Warm Period and our present time.

In our present time, sunlight alone is insufficient to cause significant changes to ice sheet mass. Sunlight must act in concert with other effects such as cloud cover, water vapor and other “greenhouse” gasses such as CO2. Regardless of the mechanisms, the Earth system must do two things to melt more ice: 1) retain more heat energy and 2) via the atmosphere, transport this heat to the poles and transfer it to the ice. Additional heat energy in the system cannot melt ice unless this transport and transfer happen.

Ice Sheets Melting: Conservation of Energy

A 2007 study by Shepherd and Wingham published in Science shows the current melt rate from Greenland and Antarctica contribute 0.014 inches to SLR each year. For perspective, the thickness of 3 human hairs is greater than 0.014 inches. The results align reasonably well with the other studies mentioned. Despite the minuscule amount of actual SLR from melting ice, NOAA and the IPCC provide 21st century SLR projections that range from a few inches to several meters. The wide range of uncertainty leads to angst about catastrophe; however, the use of basic science allows us to provide reasonable bounds to the possibilities.

Before the start of the American Revolution, Scottish scientist Joseph Black (and others) solved the mysteries of specific heat and latent heat, which gives us the relationship between heat energy, changing states of matter (solid/liquid) and change of temperature. Equations 1 and 2 give us the mathematical relationships for specific heat and latent heat respectively:

(1) E = mc∆T

(2) E = mL

Where E is thermal energy (Joules), m is the mass (kg), c is the “specific heat” constant (J/kg/°C), ∆T is the change in temperature (°C), and L is the latent heat constant (J/kg). Specific heat is the amount of heat energy that we must add (or remove) from a specified mass to increase (or decrease) the temperature of that mass by 1 °C. Latent heat is the thermal energy released or absorbed during a constant temperature phase change. If we know the mass of the ice, water or atmosphere, it is easy to calculate the amount of energy it takes to change its temperature, melt it or freeze it.

Understanding that energy is conserved when melting ice, the equations above can be used to calculate the temperature effects that must be observed in the oceans or atmosphere to support an ice melt scenario. We can provide reasonable bounds and reduce the uncertainty.

See the reference section at the end of the paper for all sources and calculations.

Key #1: Importance of the Latent Heat of Fusion

It is essential to understand the latent heat of fusion because of the enormous amount of heat energy that is required to change the state of H2O from solid to liquid. Figure 1 shows the specific heat and phase change diagram for water. The blue line shows the temperature of water in °C (y-axis) plotted against the change in thermal energy in kJ/kg (x-axis). It shows how temperature and energy are related as we go from cold solid ice to boiling liquid water. The average annual inland temperature of Greenland is -25 °C and this is the reason for Point 1 on the line. If we start at Point 1 and progress to Point 2, this shows how much heat energy must be added to change the temperature of 1kg of ice from -25 °C to 0 °C. It is important to note that at Point 2, the ice is still 100% solid at 0 °C.

Figure 1: Water Phase/Specific Heat Diagram

The diagram reveals something interesting about the behavior of water. As we progress from Point 2 to Point 3, the water undergoes a phase change from solid to liquid. There is no temperature change as the ice becomes liquid water; however, a large amount of heat energy must be added. The energy that must be added to change the phase of water from solid to liquid is the latent heat of fusion. For melting ice, temperature alone does not inform us about what is happening to the system. To assess ice melting, we must understand the net change of energy. Whether we melt 1kg of ice or the entire ice sheet in Greenland, using Equations 1 and 2, we can easily calculate the energy required to do so. Going from Point 1 to Point 3 requires 3.86×105 Joules of energy for each kg of ice mass warmed and melted. For simplicity, we call this quantity of energy “E.”

Figure 1 also shows what happens as we move from Point 3 (0 °C liquid seawater) to Point 4 (seawater starting to boil at 100 °C). It takes a measure of energy “E” to move between Points 3 and 4, just as it does to move between Points 1 and 3. Therefore, as shown in Table 1, the energy required to melt the ice is equivalent to the energy required to heat the meltwater to a boil at 100 °C. (Note: the fresh water from the ice is assumed to flow to the oceans.)

Energy to melt 1kg of polar ice from -25 °C to 0 °C water <– Is Equal To –> Energy to raise the temperature of 1kg of seawater from 0 °C to 100 °C

Table 1: Relating Energy Between Polar Ice Melt and Boiling Water

Key #2: Total Energy Required to Melt the Ice Sheets

Using Equations 1 and 2, we calculate that the total heat energy required to melt the ice sheets entirely is 1.32×1025 J. This value can be given perspective by calculating the increase in ocean water temperature that would result from adding 1.32×1025 J of heat. We know that deep ocean water below the thermocline is very stable in temperature between 0-3 °C. 90% of the ocean water mass is below the thermocline. The thermocline and surface layer above contains the ocean water that responds to changes in atmospheric heat, whether that be from seasonal changes or climate changes. Therefore, if we constrain the 1.32×1025 J of heat energy to the upper 10% of the ocean mass, we calculate the temperature increase would be 25.6 °C, assuming equal heat distribution for simplicity of analysis. This increase would make the surface temperature of equatorial ocean water close to 55 °C, similar to a cup of hot coffee. Polar seas would be perfect for swimming at nearly 25 °C. According to NOAA, over the past 50 years, the average ocean surface temperature has increased approximately 0.25 °C.

Another way to give perspective is to calculate the increase in atmospheric temperature that would result from adding 1.32×1025 J of heat to the atmosphere. First, we must understand some related facts about the atmosphere. Heat energy must be transported by the atmosphere to the polar regions, or no ice can melt. However, the atmosphere’s capacity to store heat energy is extremely low compared to the energy required to melt all of the ice. The ice sheets contain more than 900 times the thermal energy below 0 °C as the atmosphere contains above 0 °C, and therefore the atmospheric heat energy must be replenished continuously to sustain ice melting. Melting polar ice with heat from the atmosphere is analogous to filling a bathtub with a thimble. The low specific heat of air is one reason the atmosphere lacks heat carrying capacity. The other reason is its low mass.

Figure 2 shows the vertical profile of the Earth’s atmosphere. The red line in Figure 2 shows the temperature of the atmosphere in °C (x-axis) plotted against the altitude in km (y-axis). 75% of the mass of the atmosphere is contained in the Troposphere, where all life (outside of the oceans) exists on Earth. Figure 2 reveals that most of the atmosphere is far too cold to melt ice. We can ignore the Upper Thermosphere as the mass of atmosphere contained in that layer is negligibly small. Only the Lower Troposphere below 2.5 km altitude contains air at a warm enough temperature to melt ice. (See the region of the graph enclosed in the yellow oval.) 35% of the atmospheric mass exists below 2.5 km, and the average temperature is ~ 8 °C.

Figure 2: Vertical Profile of Earth’s Atmosphere

Using Equation 1 with E = 1.32×1025 J, the mass of the atmosphere below 2.5 km and solving for ∆T, we can calculate what the temperature of the air below 2.5 km would be if it contained the energy required to melt all of the ice. The atmospheric temperature would have to be 7,300 °C, which is 1,522 °C hotter than the surface of the sun. Life on Earth would be in jeopardy from the increased atmospheric heat long before all of the ice melted. While there are no plausible thermodynamic pathways to heat the Earth’s atmosphere to such temperatures, the calculations of energy required are accurate. According to NASA, the global average temperature over the past 50 years has increased approximately 0.6 °C.

Key #3: SLR From Incremental Atmospheric Heat Exchange with Ice Sheets

It is said, “you can’t have your cake and eat it too.” Similarly, you can’t have atmospheric heat and melt with it too. If the ice consumes heat, then the atmosphere cools. If the atmosphere retains its heat, then no ice melts. So, let’s examine some scenarios where we trade energy from the atmosphere with ice to see how much corresponding SLR we can get.

Using Equation 1, we can determine the change in energy for a 1 °C temperature decrease in the atmosphere below 2.5km. We can then apply this energy to the ice, assume maximum melting volume and translate that to SLR. For every 1 °C of atmospheric energy transferred to the ice, we get 0.4 inches of SLR. Some IPCC scenarios project a 4 °C rise in “global average temperature” in the 21st century, due to increased atmospheric CO2. An increase in temperature does not melt any additional ice unless the heat is transferred to the ice. If 4 °C of energy from the atmosphere is transferred to the ice, we get a corresponding 1.7 inches of SLR and an atmosphere that is 4 °C cooler. If we transfer all of the energy in the atmosphere above 0 °C to the ice, then we get 3.4 inches of SLR and a world where the entire atmosphere is at or below 0 °C. The global average temperature would be 6 °C less than the coldest experienced during the depth of a glacial period.

To raise sea level by 12 inches would require the atmosphere to heat up by 28 °C before exchanging that energy with the ice. As we would experience it, the atmosphere would have to heat up by some incremental value, then exchange that incremental value of energy with the ice, thus cooling the atmosphere, and then repeat this process until the 28 °C of atmospheric heat is consumed.

Key #4: Maximum Ice Melt Potential from Technology

Keys #1-3 don’t offer much to support the possibility of large quantities of ice being melted rapidly by natural causes. The next obvious question is, can humankind generate enough heat with our most advanced technology to melt a significant amount of ice rapidly?

The power of the atom is one of the most awesome powers humankind has harnessed. There are 8,400 operational nuclear warheads in the world’s nuclear arsenal, with a total yield of 2,425 Megatons of TNT. It is interesting to note that the energy contained in this nuclear arsenal is over 800 times the equivalent explosive power used in World War II. It is said that there are enough nuclear weapons to destroy the world a hundred times over. So, perhaps this is enough energy to melt the ice sheets entirely. For this exercise, we assume the nuclear weapons release their energy slowly – only fast enough to melt ice and no faster. For maximum melting, we evenly distribute all of the weapons in the ice. However, when we convert 2,425 MT to Joules, we get a number that is far below the energy required to melt all of the ice. The SLR we could get by using all of the world’s nuclear weapons for melting ice would be 0.002 inches. For reference, the diameter of a human hair is 2.5 times thicker than this. If we want all of the ice to melt, we need to duplicate each weapon more than 1,300,000 times. So, it looks like our current arsenal of nuclear weapons is no match for the ice.

What other sources of power does humankind have that could be used to melt a significant amount of ice? The annual global energy production of electric power is 25 petawatt-hours (25×1015 Whr) or 9×1019 Joules. If we could, through some advanced technology, transfer all electric energy generated over one year to heaters buried in the ice, and do this with no transmission or distribution losses, then how much ice could we melt? The answer is 0.02 inches of SLR (equivalent to 4 human hair diameters). This scenario would require that humans not use any electric power for that entire year, for anything other than melting ice. Humanity would have to forego the benefits of electric power for over 146,000 years to melt all of the ice, assuming static conditions in the ice.

Ice Sheets Melting: Analysis

Since 1900 we have 1 °C of retained atmospheric heat, and enough heat consumed by the ice sheets to produce 0.9 – 1.6 inches of SLR. From Key #3 we learned 1.7 inches of SLR results from trading 4 °C of atmospheric heat for ice melting. Therefore, as a worst-case approximation, if there had been no net ice melt since 1900, the atmosphere would have heated by approximately 5 °C. We can conclude that ice melting consumed 4 °C of heat, leaving the atmosphere with 1 °C of retained heat. We observed a 4:1 ratio of consumed heat to retained heat in the 20th century, worst case. For the best-case approximation, we use the lower estimate of 0.9 inches of SLR, which yields a 2:1 ratio of consumed heat to retained heat over the same period. In one of the more extreme scenarios, the IPCC climate model projects 4 °C of atmospheric temperature rise in the 21st century. For a 4 °C rise scenario, using the worst-case ratio of consumed to retained heat, we can estimate a 6.4 inch SLR over that period. In a more moderate scenario, the IPCC projects a 1.5 °C temperature rise. For a 1.5 °C rise, using the best-case ratio of consumed to retained heat, we can estimate an SLR of 1.4 inches. Unfortunately, none of the climate models have been able to predict the climate accurately, and none of them backtest successfully. We are one-fifth of the way through the 21st century and do not appear to be on course for the IPCC’s worst-case temperature projections. Therefore, it is reasonable to assume the results for the 21st century will likely be very similar to the 20th century, with 1-2 inches of SLR.

Detailed analysis of the claimed Earth energy imbalance is beyond the scope of this paper. The analysis presented here exposes the effects that must occur from an imbalance that leads to catastrophic melting. The ice must absorb large quantities of heat energy for sustained periods. Therefore, inland temperatures over Antarctica and Greenland would need to be maintained well above 0 °C for significant portions of the year. Atmospheric heat lost to the ice would need to be continually replenished to perpetuate the process. The oceans store heat energy, but the large mass of the oceans with the high specific heat of seawater blunts the possible effects from that energy. The energy that would raise the first 2.5 km of atmospheric air by 1 °C would raise the first 1,000 feet of seawater by only 0.0035 °C. The 2nd law of thermodynamics requires a temperature difference to transfer heat energy. Small increases in ocean temperature cannot lead to large movements of heat energy to an already warmer atmosphere. Finally, the system must transport more heat energy to the polar regions. In reality, the Earth maintains a very large temperature gradient between the equator and the poles. Our observations do not show gradient changes that would support significant additional heat transport. Without the increased energy storage and transport, and sustained polar temperatures well above freezing, catastrophic ice melt scenarios are not possible.

Ice Sheets Melting: Summary

Despite the overwhelming number of popular news reports to the contrary, studies of ice sheets melting over the past century show remarkable ice stability. Using the proper scientific perspective, analysis of ice-melt rates and ice-mass losses show the ice sheets will take hundreds of thousands of years to melt, assuming the next glacial period doesn’t start first. An application of basic physics shows that for every 1 °C of atmospheric heat exchanged with the ice sheets we get a maximum 0.4 inches of SLR and a correspondingly cooler atmosphere. Over the 20th century, we observed a worst-case 4:1 ratio of consumed heat to retained atmospheric heat. It is proposed that this ratio can be used to assess potential ice-melt related SLR for a hypothetical atmospheric temperature increase scenario over the current century. Using a reasonable range for all of the variables we can estimate an SLR of between 1.4 – 6.4 inches, but our current observations support the rise being toward the lower end of that range.

The atmosphere and oceans do not show the increase in energy necessary to cause catastrophic SLR from rapidly melting ice. Humankind does not possess the technology to melt a significant amount of ice because the energy required is enormous and only nature can meter out this energy over very long periods. With the proper scientific perspective about the amount of energy required to melt ice, it should be much more difficult for Climate Alarmists to scare the public with scenarios not supported by basic science.

References

NASA Study: Mass Gains of Antarctic Ice Sheet Greater than Losses: https://www.nasa.gov/feature/goddard/nasa-study-mass-gains-of-antarctic-ice-sheet-greater-than-losses

Ramp-up in Antarctic ice loss speeds sea level rise: https://climate.nasa.gov/news/2749/ramp-up-in-antarctic-ice-loss-speeds-sea-level-rise/?fbclid=IwAR2Vnkbxxa-NTU_v0lRUUGGDffMs4Q6BGvHX-KHzcHM7-q2B7IO59wCEiQc

Sea Level and Climate (Fact Sheet 002-00): https://pubs.usgs.gov/fs/fs2-00/

Spatial and temporal distribution of mass loss from the Greenland Ice Sheet since AD 1900: https://www.nature.com/articles/nature16183

Recent Sea-Level Contributions of the Antarctic and Greenland Ice Sheets: http://science.sciencemag.org/content/315/5818/1529

All of the constants and calculations are provided in the associated Excel file located here: https://wattsupwiththat.com/wp-content/uploads/2019/04/Ice-Atmosphere-Ocean-Energy-20190407-1-1.xlsx

Climate Modellers Waiting for Observations to Catch Up with Their Predictions

Reblogged from Watts Up With That:

Guest essay by Eric Worrall

h/t Dr. Willie Soon; In climate science, when your model predictions are wrong, you wait for the world to correct itself.

New climate models predict a warming surge
By Paul VoosenApr. 16, 2019 , 3:55 PM

For nearly 40 years, the massive computer models used to simulate global climate have delivered a fairly consistent picture of how fast human carbon emissions might warm the world. But a host of global climate models developed for the United Nations’s next major assessment of global warming, due in 2021, are now showing a puzzling but undeniable trend. They are running hotter than they have in the past. Soon the world could be, too.

In earlier models, doubling atmospheric carbon dioxide (CO2) over preindustrial levels led models to predict somewhere between 2°C and 4.5°C of warming once the planet came into balance. But in at least eight of the next-generation models, produced by leading centers in the United States, the United Kingdom, Canada, and France, that “equilibrium climate sensitivity” has come in at 5°C or warmer. Modelers are struggling to identify which of their refinements explain this heightened sensitivity before the next assessment from the United Nations’s Intergovernmental Panel on Climate Change (IPCC). But the trend “is definitely real. There’s no question,” says Reto Knutti, a climate scientist at ETH Zurich in Switzerland. “Is that realistic or not? At this point, we don’t know.”

Many scientists are skeptical, pointing out that past climate changes recorded in ice cores and elsewhere don’t support the high climate sensitivity —nor does the pace of modern warming. The results so far are “not sufficient to convince me,” says Kate Marvel, a climate scientist at NASA’s Goddard Institute for Space Studies in New York City. In the effort to account for atmospheric components that are too small to directly simulate, like clouds, the new models could easily have strayed from reality, she says. “That’s always going to be a bumpy road.”

In assessing how fast climate may change, the next IPCC report probably won’t lean as heavily on models as past reports did, says Thorsten Mauritsen, a climate scientist at Stockholm University and an IPCC author. It will look to other evidence as well, in particular a large study in preparation that will use ancient climates and observations of recent climate change to constrain sensitivity. IPCC is also not likely to give projections from all the models equal weight, Fyfe adds, instead weighing results by each model’s credibility.

Read more: https://www.sciencemag.org/news/2019/04/new-climate-models-predict-warming-surge

It’s nice to learn that the IPCC is considering using observations to constrain model projections.

Why climate predictions are so difficult

“The difficulties [in climate modeling Bjorn Stevens of the Hamburg Max Planck Institute for Meteorology] and his fellow researchers face can be summed up in one word: clouds. The mountains of water vapor slowly moving across the sky are the bane of all climate researchers.”

Climate Etc.

by Judith Curry

An insightful interview with Bjorn Stevens.

View original post 1,104 more words

Retreating Greenland glacier is growing again

Tallbloke's Talkshop

Jakobshavn glacier, West Greenland [image credit: Wikipedia]
Without jumping to hasty conclusions, this is an interesting development not predicted by the IPCC’s supposed experts. Natural ocean/climate oscillations are implicated. Against assumptions, rising carbon dioxide levels cannot explain these latest observations.

A new NASA study finds a major Greenland glacier that was one of the fastest shrinking ice and snow masses on Earth is growing again, reports The GWPF.

The scientists were so shocked to find the change, Khazendar said: “At first we didn’t believe it.

“We had pretty much assumed that Jakobshavn would just keep going on as it had over the last 20 years.”

View original post 194 more words

Warmer California winters will reduce Sierra Nevada snowpack

Jerry Brown’s myopic view of climate from 2016:

California Governor Edmund G. Brown, Jr.:  “California droughts are expected to be more frequent and persistent, as warmer winter temperatures driven by climate change reduce water held in the Sierra Nevada snowpack and result in drier soil conditions. Recognizing these new conditions, the executive order directs permanent changes to use water more wisely and efficiently, and prepare for more frequent, persistent periods of limited supply.”  9 May 2016.

Source via Wayback Machine: https://web.archive.org/web/20160520060004/https://www.gov.ca.gov/news.php?id=19408

[edit, photo added below from KOLO 8 Reno, 7 Mar 2019]:

No photo description available.

 

Ringed and bearded seals, still listed as ‘threatened’, are still doing really well

Dr. Crockford’s key quote up front: “…Quakenbush is willing to admit [in a wishy-washy way] to a journalist that biologists can’t tell the future:

‘…two predictions that we made about what could be bad for walruses, just within a couple of years turned around and were sort of the opposite.’”

Hifast Note: “Sort of the opposite” translates to “we were wrong.”

polarbearscience

This isn’t news but it’s good to hear it again, this time from the mouth of one of the biologists who collects the data: against all odds, the primary prey species of polar bears are doing spectacularly well.

Ringed seal Barrow AK_Brendan Kelly

According to leading seal biologist Lori Quakenbush of Alaska Department of Fish and Game, ringed and bearded seals in the Chukchi Sea are doing great (ADN, 11 February 2019, “Seals seem to be adapting to shrinking sea ice off Alaska”):

“We’re seeing fat seals,” said Lori Quakenbush, a wildlife biologist with the Alaska Department of Fish and Game’s Arctic Marine Mammal Program. “They are reproducing earlier than they have in the past, which says they are getting enough nutrition at this point to grow quickly and become reproductive at an earlier age.”

Quakenbush looking for ringed and bearded seals in Chukchi sea_11 Feb 2019 ADNRinged and bearded seals across the Arctic, including the Chukchi and Bering Seas, were listed as threatened in 2012…

View original post 1,078 more words

Met Office Decadal Forecasts Running Hot

NOT A LOT OF PEOPLE KNOW THAT

By Paul Homewood

met-o-2016-2021-detail-1

https://tallbloke.wordpress.com/2019/02/05/met-office-update-there-is-no-update/

Time to take a closer look at the new Met Office decadal forecast of global temperatures. (By decadal, the Met Office mean five years, apparently!)

Tallbloke handily updated the Met Office forecast from January 2017 with actual temperatures since (see above chart), in order to see how good their forecasting prowess actually was.

As you can see, it was pretty crap in reality!

For the period 2017-21, they predicted an anomaly range between 0.42 and 0.89C.

By stark contrast, the actual anomaly last year was 0.30C, way below the predictions.

It is also worth highlighting that even the retrospective predictions (that is retrospectively modelling past temperatures using known variables) were at the high end of the bands till the mid 1990s, and since have been trundling along the bottom with the exception of the record El Nino of 2015/16.

It is even more noticeable that the…

View original post 225 more words

John Christy: Guilty as Charged (DeSmogBlog’s own goal)

Reblogged from Watts Up With That and Master Resource:

By Robert Bradley Jr. — February 5, 2019

“From the Climate Disinformation Database: John R. Christy” reads the headline from DeSmogBlog in its “Climate Denier Spotlight.” The following short profile follows (emphasis added):

John R. Christy is a professor of Atmospheric Science and Director of the Earth System Science Center at the University of Alabama in Huntsville. He’s a vocal critic of climate change models and has testified on numerous occasions against the mainstream scientific views on man-made climate change. Christy has affiliations with a number of climate science-denying think tanks, including the Heartland Institute and the Cato Institute. And now Andrew Wheeler has appointed him to serve on the U.S. Environmental Protection Agency’s Science Advisory Board.

Professor Christy is an excellent choice for EPA’s Science Advisory Board. And if you doubt me, please read the quotations below that DeSmogBlog has put up on its website to purportedly discredit EPA Secretary Wheeler’s choice. Christy’s views are mainstream in the world that most of us live in.

February, 2016

“The real world is not going along with rapid warming. The models need to go back to the drawing board.”

June, 2015

“[W]e are not morally bad people for taking carbon and turning it into the energy that offers life to humanity in a world that would otherwise be brutal (think of life before modernity). On the contrary, we are good people for doing so.”

April, 2015

“Carbon dioxide makes things grow. The world used to have five times as much carbon dioxide as it does now. Plants love this stuff. It creates more food. CO2 is not the problem.… There is absolutely no question that carbon energy provides with longer and better lives. There is no question about that.”

August, 2013

“I was at the table with three Europeans, and we were having lunch. And they were talking about their role as lead authors. And they were talking about how they were trying to make the report so dramatic that the United States would just have to sign that Kyoto Protocol.”

February, 2013

“If you choose to make regulations about carbon dioxide, that’s OK.  You as a state can do that; you have a right to do it.  But it’s not going to do anything about the climate. And it’s going to cost, there’s no doubt about that.”

March, 2011

“…it is fairly well agreed that the surface temperature will rise about 1°C as a modest response to a doubling of atmospheric CO2 if the rest of the component processes of the climate system remain independent of this response.”

May, 2009

“As far as the [2003 American Geophysical Union statement], I thought that was a fine statement because it did not put forth a magnitude of the warming. We just said that human effects have a warming influence, and that’s certainly true. There was nothing about disaster or catastrophe. In fact, I was very upset about the latest AGU statement [in 2007]. It was about alarmist as you can get.”

February, 2009

“We utilize energy from carbon, not because we are bad people, but because it is the affordable foundation on which the profound improvements in our standard of living have been achieved – our progress in health and welfare.”

December, 2003

In a 2003 interview with the San Francisco Chronicle, Christy describes himself as  “a strong critic of scientists who make catastrophic predictions of huge increases in global temperatures and tremendous rises in sea levels.”

Christy also added:

“It is scientifically inconceivable that after changing forests into cities, turning millions of acres into farmland, putting massive quantities of soot and dust into the atmosphere and sending quantities of greenhouse gases into the air, that the natural course of climate change hasn’t been increased in the past century.”

Conclusion

The above quotations are neither radical nor errant. They are middle-of-the-roadish. John Christy knows that the climate changes and humans have a warming impact (good news indeed). And yes, the climate models are overpredicting real-world warming, a divergence that is growing, not contracting, as his iconic graph shows.

If Professor Christy sounds like a rational scientist working in a very unsettled field, you are correct. No “pretense of knowledge” here. Compare him to the know-it-all alarmist climatologists such as Andrew Dessler at Texas A&M, whose challenge to Texas Gov. Abbott was critically reviewed last week at MasterResource.

In fact, Dr. Christy (neutral profile here) is a global lukewarmer swimming upstream in a sea of Malthusian snowflakes, defined as those who think that the natural climate is optimal and that change cannot be good. (As Professor Dessler states: “… when it comes to climate, change is bad.” [1])

A polite, learned scientist, John Christy has to be among the most likeable physical scientists you will meet. (He was a star at a Houston Forum Climate Summit back in 1999, another story.) May America get to know him better in his new role.

———-

[1] Dessler, Introduction to Modern Climate Change (Cambridge, UK: Cambridge University Press, 2nd ed., 2016),  p. 146 (his emphasis).


Rob Bradley is the editor of Master Resource, well worth adding to your bookmarks.