Natural climate processes overshadow recent human-induced Walker circulation trends

Reblogged from Watts Up With That:

Institute for Basic Science

Normal conditions (top), strengthening due to natural variability (middle) and weakening due to greenhouse warming (bottom). Black arrows represent horizontal and vertical winds with the shading on the background map illustrating ocean temperatures. Over the past few decades, natural variability has strengthened the Pacific Walker circulation leading to enhanced cooling in the equatorial central-to-eastern Pacific (middle). Climate models forced by increasing greenhouse gas concentrations simulate weakening of the Walker circulation (bottom). (Right) Temporal evolution of model-simulated Walker circulation trends, with the dark blue line and orange shading denoting anthropogenically-induced changes and the impact of natural processes, respectively. Credit IBS

Normal conditions (top), strengthening due to natural variability (middle) and weakening due to greenhouse warming (bottom). Black arrows represent horizontal and vertical winds with the shading on the background map illustrating ocean temperatures. Over the past few decades, natural variability has strengthened the Pacific Walker circulation leading to enhanced cooling in the equatorial central-to-eastern Pacific (middle). Climate models forced by increasing greenhouse gas concentrations simulate weakening of the Walker circulation (bottom). (Right) Temporal evolution of model-simulated Walker circulation trends, with the dark blue line and orange shading denoting anthropogenically-induced changes and the impact of natural processes, respectively. Credit IBS

A new study, published this week in the journal Nature Climate Change, shows that the recent intensification of the equatorial Pacific wind system, known as Walker Circulation, is unrelated to human influences and can be explained by natural processes. This result ends a long-standing debate on the drivers of an unprecedented atmospheric trend, which contributed to a three-fold acceleration of sea-level rise in the western tropical Pacific, as well as to the global warming hiatus.

Driven by the east-west sea surface temperature difference across the equatorial Pacific, the Walker circulation is one of the key features of the global atmospheric circulation. It is characterized by ascending motion over the Western Pacific and descending motion in the eastern equatorial Pacific. At the surface trade winds blow from east to west, causing upwelling of cold water along the equator. From the early 1990s to about 2013, this circulation has intensified dramatically, cooling the eastern equatorial Pacific and triggering shifts in global winds and rainfall (see Figure 1). These conditions further contributed to drying in California, exacerbating mega-drought conditions and impacting agriculture, water resources and wild fires. Given these widespread impacts on ecosystems and society, the recent Walker circulation trends have become subject of intense research.

In contrast to the observed strengthening, the majority of climate computer models simulates a gradual weakening of the Walker Circulation when forced by increasing greenhouse gas concentrations (see Figure 1). “The discrepancy between climate model projections and observed trends has led to speculations about the fidelity of the current generation of climate models and their representation of tropical climate processes”, said Eui-Seok Chung, researcher from the Center for Climate Physics, Institute for Basic Science, South Korea, and lead-author of the study.

To determine whether the observed changes in the tropical atmospheric circulation are due to natural climate processes or caused by human-induced climate change, scientists from South Korea, the United States and Germany came together to conduct one of the most comprehensive big-data analyses of recent atmospheric trends to date. “Using satellite data, improved surface observations and a large ensemble of climate model simulations, our results demonstrate that natural variability, rather than anthropogenic effects, were responsible for the recent strengthening of the Walker circulation”, said Prof. Axel Timmermann, Director of the IBS Center for Climate Physics at Pusan National University and co-author of this study.

In their integrated analysis, the researchers found that the satellite-inferred strengthening of the Walker circulation is substantially weaker than implied by other surface observations used in previous studies. “Putting surface observations in context with latest satellite products was a key element of our study”, said co-author Dr. Lei Shi from NOAA’s National Centers for Environmental Information in the United States.

Analyzing 61 different computer model simulations forced with increasing greenhouse gas concentrations, the authors showed that, although the average response is a Walker circulation weakening, there are substantial discrepancies amongst the individual model experiments, in particular when considering shorter-term trends. “We found that some models are even consistent with the observed changes in the tropical Pacific, in stark contrast to other computer experiments that exhibit more persistent weakening of the Walker circulation during the observational period”, said co-author Dr. Viju John from EUMETSAT in Germany. The authors were then able to tease apart what caused the spread in the computer model simulations.

Co-author Prof. Kyung-Ja Ha from the IBS Center for Climate Physics and Pusan National University explains “Natural climate variability, associated for instance with the El Niño-Southern Oscillation or the Interdecadal Pacific Oscillation can account for a large part of diversity in simulated tropical climate trends”.

“The observed trends are not that unusual. In climate model simulations we can always find shorter-term periods of several decades that show similar trends to those inferred from the satellite data. However, in most cases, and when considering the century-scale response to global warming, these trends reverse their sign eventually”, said co-author Prof. Brian Soden from the Rosenstiel School of Marine and Atmospheric Science, at the University of Miami, United States.

The study concludes that the observed strengthening of the Walker circulation from about 1990-2013 and its impact on western Pacific sea level, eastern Pacific cooling, drought in the Southwestern United States, was a naturally occurring phenomenon, which does not stand in contrast to the notion of projected anthropogenic climate change. Given the high levels of natural decadal variability in the tropical Pacific, it would take at least two more decades to detect unequivocally the human imprint on the Pacific Walker Circulation (see Figure 1, right panel).

Solar variability weakens the Walker cell

Tallbloke's Talkshop

Credit: PAR @ Wikipedia
This looks significant, pointing directly at solar influences on climate patterns. The researchers found evidence that atmosphere-ocean coupling can amplify the solar signal, having detected that wind anomalies could not be explained by radiative considerations alone.

An international team of researchers from United Kingdom, Denmark, and Germany has found robust evidence for signatures of the 11-year sunspot cycle in the tropical Pacific, reports Phys.org.

They analyzed historical time series of pressure, surface winds and precipitation with specific focus on the Walker Circulation—a vast system of atmospheric flow in the tropical Pacific region that affects patterns of tropical rainfall.

They have revealed that during periods of increased solar irradiance, the trade winds weaken and the Walker circulation shifts eastward.

View original post 249 more words

De Nada Ocean SSTs in February

Science Matters

The best context for understanding decadal temperature changes comes from the world’s sea surface temperatures (SST), for several reasons:

  • The ocean covers 71% of the globe and drives average temperatures;
  • SSTs have a constant water content, (unlike air temperatures), so give a better reading of heat content variations;
  • A major El Nino was the dominant climate feature in recent years.

HadSST is generally regarded as the best of the global SST data sets, and so the temperature story here comes from that source, the latest version being HadSST3.  More on what distinguishes HadSST3 from other SST products at the end.

The Current Context

The chart below shows SST monthly anomalies as reported in HadSST3 starting in 2015 through February 2019. For some reason, it took almost a whole month to publish the updated dataset.

A global cooling pattern is seen clearly in the Tropics since its peak in 2016, joined…

View original post 1,350 more words

Satellite Evidence Affirms Solar Activity Drove ‘A Significant Percentage’ Of Recent Warming

Reblogged from the NoTricksZone:

In a new paper, two astrophysicists shred the IPCC-preferred and model-based PMOD solar data set and affirm the ACRIM, which is rooted in observation and shows an increase in total solar irradiance (TSI) during the 1980-2000 period. They suggest a “significant percentage” of recent climate change has been solar-driven.

Scafetta and Willson, 2019

I. The PMOD is based on proxy modeled predictions, “questionable” modifications, and degraded, “misinterpreted” and “erroneously corrected” results 

• “The PMOD rationale for using models to alter the Nimbus7/ERB data was to compensate for the sparsity of the ERBS/ERBE data and conform their gap results more closely to the proxy predictions of solar emission line models of TSI behavior.”
• “PMOD’s modifications of the published ACRIM and ERB TSI records are questionable because they are based on conforming satellite observational data to proxy model predictions.”
• “The PMOD trend during 1986 to 1996 is biased downward by scaling ERB results to the rapidly degrading ERBE results during the ACRIM-Gap using the questionable justification of agreement with some TSI proxy predictions first proposed by Lee III et al.(1995).”
• PMOD misinterpreted and erroneously corrected ERB results for an instrument power down event.”
• “PMOD used overlapping comparisons of ACRIM1 and ACRIM2 with ERBE observations and proxy models to construct their first composite. Other PMOD composites [17, 18] used different models of the ERBE-ACRIM-Gap degradation. The result of these various modifications during the ACRIM-Gap was that PMOD introduced a downward trend in the Nimbus7/ERB TSI data that decreased results by 0.8 to 0.9 W/m2 (cf. [18, 20]).”

II. The PMOD TSI composite “flawed” results were an “unwarranted manipulation” of data intended to support AGW, but are  “contraindicated”

• “The dangers of utilizing ex-post-facto corrections by those who did not participate in the original science teams of satellite experiments are that erroneous interpretations of the data can occur because of a lack of detailed knowledge of the experiment and unwarranted manipulation of the data can be made based on a desire to support a particular solar model or some other nonempirical bias. We contend that the PMOD TSI composite construction is compromised in both these ways.”
 “[O]ur scientific knowledge could be improved by excluding the more flawed record from the composite. This was the logic applied by the ACRIM team. In point of fact PMOD failed to do this, instead selecting the ERBE results that were known to be degraded and sparse, because that made the solar cycle 21–22 trend agrees with TSI proxy models and the CAGW explanation of CO2 as the driver of the global warming trend of the late 20th century.”
• “The use of unverified modified data has fundamentally flawed the PMOD TSI satellite composite construction.”
• “The consistent downward trending of the PMOD TSI composite is negatively correlated with the global mean temperature anomaly during 1980–2000. This has been viewed with favor by those supporting the COanthropogenic global warming (CAGW) hypothesis since it would minimize TSI variation as a competitive climate change driver to CO2, the featured driver of the hypothesis during the period (cf.: [IPCC, 2013, Lockwood and Fröhlich, 2008]).”
• “Our summary conclusion is that the objective evidence produced by all of the independent TSI composites [3,5, 6, 9] agrees better with the cycle-by-cycle trending of the original ACRIM science team’s composite TSI that shows an increasing trend from 1980 to 2000 and a decreasing trend thereafter. The continuously downward trending of the PMOD composite and TSI proxy models is contraindicated.”

III. The ACRIM TSI supports the conclusion that “a significant percentage” of climate change in recent decades was driven by TSI variation

Graph Source: Soon et al., 2015
• ACRIM shows a 0.46 W/m2 increase between 1986 and 1996 followed by a decrease of 0.30 W/m2 between 1996 and 2009. PMOD shows a continuous, increasing downward trend with a 1986 to 1996 decrease of 0.05 W/m2 followed by a decrease of 0.14 W/m2 between 1996 and 2009. The RMIB composite agrees qualitatively with the ACRIM trend by increasing between the 1986 and 1996 minima and decreasing slightly between 1996 and 2009.”
• “ACRIM composite trending is well correlated with the record of global mean temperature anomaly over the entire range of satellite observations (1980–2018) [Scafetta. 2009]. The climate warming hiatus observed since 2000 is inconsistent with CO2 anthropogenic global warming (CAGW) climate models [Scafetta, 2013, Scafetta, 2017]. This points to a significant percentage of the observed 1980–2000 warming being driven by TSI variation [Scafetta, 2009, Willson, 2014, Scafetta. 2009]. A number of other studies have pointed out that climate change and TSI variability are strongly correlated throughout the Holocene including the recent decades (e.g., Scafetta, 2009,  Scafetta and Willson, 2014, Scafetta, 2013Kerr, 2001, Bond et al., 2001, Kirkby, 2007, Shaviv, 2008, Shapiro et al., 2011, Soon and Legates, 2013, Steinhilber et al., 2012, Soon et al., 2014).”
• “The global surface temperature of the Earth increased from 1970 to 2000 and remained nearly stable from 2000 and 2018. This pattern is not reproduced by CO2 AGW climate models but correlates with a TSI evolution with the trending characteristics of the ACRIM TSI composite as explained in Scafetta [6,12, 27] and Willson [7].”

IV. The Correlation:

Graph Source: Soon et al., 2015
Image Source: Smith, 2017

V. The Mechanism: Higher solar activity on decadal-scales limits the seeding of clouds, which means more solar radiation is absorbed by the surface, warming the Earth 

Image Source: Fleming, 2018

Image Source: Sciencedaily.com

VI. The radiative forcing from the increase in surface solar radiation: +4.25 Wm-2/decade between 1984-2000

Image Source: Goode and Palle, 2007

Image Source(s): Hofer et al., 2017 and Kay et al., 2008

Not Threatened By Climate Change: Galápagos Islands

Reblogged from Watts Up With That:

Guest Essay by Kip Hansen

featured_image_galapagosRightfully famous for its strangely different flora and fauna, the products of ages of isolation from the mainland of South America and the  maybe the seed of inspiration to Charles Darwin’s ideas regarding the evolution of Earth’s plants and animals, the Galápagos Islands are almost exactly on the equator some 600 miles west of Ecuador.

The Galápagos Islands  are home to many species, some unique to the Galápagos:

vol_frig

seal_tortoise

blue_frig

And, not the least if last, the uniquely cute, Equator-spanning, Galápagos Penguins:

galapagos_penguins

The fabled living treasures of this group of islands are threatened, besieged and at risk of disappearing forever long before we have had time to discover all of their secrets.

A beautifully illustrated article in the New York Times,  featuring the strikingly evocative photography of  Josh Haner, warns us how  the Galápagos Islands’ ecological niches  and their living legends are endangered.

“As climate change warms the world’s oceans, these islands are a crucible. And scientists are worried. Not only do the Galápagos sit at the intersection of three ocean currents, they are in the cross hairs of one of the world’s most destructive weather patterns, El Niño, which causes rapid, extreme ocean heating across the Eastern Pacific tropics.”

“To see the future of the Galápagos, look to their recent past, when one such event bore down on these islands. Warm El Niño waters blocked the rise of nutrients to the surface of the ocean, which caused widespread starvation.

Large marine iguanas died, while others shrank their skeletons to survive. Seabirds stopped laying eggs. Forests of a giant daisy tree were flattened by storms and thorny invasive bushes took over their territory. Eight of every 10 penguins died and nearly all sea lion pups perished. A fish the length of a pencil, the Galápagos damsel, was never seen again.”

Somehow, this destruction and death may have taken place without it coming to your attention.   Certainly, with the Galápagos Islands being rated #5 in the 8 Best Ecotourism Destinations In The World,  one wonders how the Galápagos maintain their popularity with all those awful things going on.

This is a very typical example what passes for science journalism today, as the Times continues with:

“That was in 1982. The world’s oceans have warmed at least half a degree Celsius since then.”

Let me try to untangle the web of this mixture of fact and fallacy.

Claim 1:  “The world’s oceans have warmed at least half a degree Celsius since then. [1982].”   The link is to the Times’ very own really scary story (based on the IPCC’s SR1.5 ) which stated “But as global average temperatures have risen half a degree in that span, these bleaching events [referring to coral bleaching] have become a regular phenomenon.”  Let me correct this:  ocean temperatures worldwide have not warmed by 0.5°C. 

Ocean_temperature

Not 0.5°C but 0.175-0.20°C (errorless degrees of course, NODC/NOAA produce tiny numbers like these with no uncertainty whatever.)

Maybe the author,  Nicholas Casey, meant to write sea surface temperature (SST) has risen half a degree?  Let’s see what SST looks like at the Galápagos:

Daily_SST_3_2019

On this particular day, 9 March 2019, we see right along the equator  off the shore of Ecuador, dark blue (in the little green circle) which represents sea surface temperature between 2 and 3°C (about 5°F) below the 1971-2000 base period.

Caveat:  These sea surface temperatures change daily.  By sea surface is meant:  “Sea Surface Temperature (SST) is defined as the skin temperature (top 2 mm) of the ocean. …. Instruments on satellites now remotely measure SST for the whole world every day.”

Here’s the last year, with images picked out near the beginning of each month.

sst

The SST of the sea surrounding the Galápagos swings over a range of 4 degrees or so during the year.  And how about the long term changes?

SST_1955-2010Annual temperature climatology at the surface ( 1.00 degree grid)

Again, the small circle off the coast of Ecuador shows the location of the Galápagos Islands, sitting just inside the 24°C contour.  Comparing the decadal averages we find that there has been no change at the Galápagos since 1955.

The fact of the matter is that sea surface temperatures along the equator between South America and Southeast Asia are driven by the phenomena called ENSO — El Niño–Southern Oscillation.  Those readers not familiar with the ENSO can watch this short 2 minute video (opens in a new tab or window).

The event referred to in the Times is the 1982 major El Niño event which temporarily shut down the upwelling of cooler nutrient rich waters that feed the diverse aquatic life in the Galápagos which resulted in population drops of marine iguanas, seals, and penguins.     A similar situation recurred in the 1997-1998 major El Niño event and can reasonably be assumed that this was also repeated every time there was a Major (or Super) El Niño in the past.

The Galápagos Islands lie some 600 miles west of the shore of Ecuador and sit straddling the Equator.

Maps_Galapagos

galapagos_currents

Five important Pacific Ocean currents meet there:  The Panama Current, the nutrient rich Humboldt flows north up the coast of South America and then turns west heading to the Galápagos, where it joins in the westward flowing South Equatorial Current.  Slipping along the equator, flowing west to east, is the North Equatorial Countercurrent.  “Lastly, and possibly most importantly, is the Cromwell Current, aka the Pacific Equatorial Undercurrent. Until now, we’ve been talking about surface ocean currents, but the Cromwell flows about 300 feet down, from west to east along the equator. When it hits the Galápagos from the west, it’s deflected toward the surface, bringing yet more cool, nutrient-rich water. “ [ source ]  Nutrient rich waters increase the plankton growth and that attracts the sardines and other fishes which eat the plankton.

El Niño conditions do not “cause rapid, extreme ocean heating across the Eastern Pacific tropics.” (as stated in the NYT)  Rather, according to NOAA, an El Niño event is when “huge masses of warm water …  slosh east across the Pacific Ocean towards South America.”  (well, sort of…) The El Niño is not something that causes heating of the ocean surface, it is an effect of warmer waters moving from the western Pacific to the eastern Pacific, in part by a weakening of the easterly trade winds, which blow east to west.  El Niño can be identified by a certain pattern of changed wind and ocean currents — and in fact, there are many sub-classes of El Niños, which each have differing effects on the world’s weather.

But for the Galápagos, this is the important effect in regards to the ocean:

El Niño’s mass of warm water puts a lid on the normal currents of cold, deep water that typically rise to the surface along the equator and off the coast of Chile and Peru, said Stephanie Uz, ocean scientist at Goddard Space Flight Center in Greenbelt, Maryland. In a process called upwelling, those cold waters normally bring up the nutrients that feed the tiny organisms, which form the base of the food chain.

“An El Niño basically stops the normal upwelling,” Uz said. “There’s a lot of starvation that happens to the marine food web.” These tiny plants, called phytoplankton, are fish food – without them, fish populations drop, and the fishing industries that many coastal regions depend on can collapse.  [ source ]

el_Nino_windsAs for the small pelagic fish that depend on those upwellings and the plankton that feed off their nutrient rich waters, they move with the food supply — similar in patterns occur off the west coast of North America.

Further complicating the situation for Galápagos seals, flightless cormorants and penguins  is that the world’s fisheries experts know that sardine and anchovy populations experience multi-decadal-scale cycles of boom and bust population numbers — which may be somewhat related to ocean temperatures, with sardines preferring warmer waters than anchovies — maybe. Some of the fluctuation may be due to or contributed to by overfishing.  The scientific jury is still out on the issue.  Anchovies boom while sardines bust, and vice-versa.   The patterns seen are similar on the western coasts of North America, South America and Africa, and on the east coast of Japan.

anchovy_sardine_rollercoastIt is UNESCO that makes the claim most commonly repeated:

“Already under pressure from tourism development, population growth and the impacts of introduced species, the native wildlife and ecosystems of the Galápagos will be significantly affected by changes in the climate. The key factor looks likely to be how changes in El Niño and other cyclical events are manifest under global warming and how ocean currents and productivity respond.

 CLAIMED THREATS:  El Niño is blamed for shrinking marine iguanas (oddly true), damage to Daisy Tree Forests (happened twice in the last 100 years), starving penquins, cormorants and seals,  invasive blackberrys, invasive fire ants, damage from rising sea levels.

Taking the last of the claims first:  Sea Level.

Sea level hasn’t been  changing much in the Galápagos:

Baltra_SLR_monthly

Baltra_SLR_annual

Monthly and annual tide gauge records at the PSMSL station located on Isla Baltra show relative sea levels rising and falling and mostly staying within a 100mm/4inch band since 1985.  El Niños are known to have a positive effect (raising) on sea levels in the eastern Pacific and we see these noted on the annual graph above.

Just to be thorough we have to look at Vertical Land Movement in order to know if it is the sea surface or the land that is moving — up or down.  The good news is that there are CGPS (continuously operating GPS stations — CGPS@TG) in the Galápagos:

GLPS_VLM_800

Nothing in particular going on with Vertical Land Movement, other than something that seems to be a seasonal cycle, but constrained mostly in a range of about 1 inch (0.025 meters).  Even with this short ten year record, we  can see that there is no upward VLM disguising rising sea level.

 

Combining Tide Gauge and CGPS data it does not appear that there has been any SLR at the Galápagos over the last 30 years.

Bottom Line –  Sea Level Rise :   Not a current threat to the Galápagos Islands or their flora and fauna.

This leaves us with the concerns that El Niño episodes or events will seriously damage the delicate ecological balance of the Galápagos.

NOAA says:  “El Niño is a natural, ocean-atmospheric phenomenon marked by warmer-than-average sea surface temperatures in the central Pacific Ocean near the equator. Typical El Niño patterns during winter and early spring include below-average precipitation and warmer-than-average temperatures along the northern tier of the U.S., and above-normal precipitation and cooler conditions across the South. While impacts vary during each El Niño event, NOAA regularly provides temperature and precipitation outlooks for the seasons ahead.”

El Niño events are thought to have been occurring for thousands of years.[ ref. ] For example, it is thought that El Niño affected the ancient Moche people, in what is in modern-day Peru, who may have sacrificed humans in order to try to prevent heavy El Nino rains.

There have been at least 30 El Niño events since 1900, with the 1982–83, 1997–98 and 2014–16 events among the strongest on record. Since 2000, El Niño events have been observed in 2002–03, 2004–05, 2006–07, 2009–10 and 2014–16.

Major ENSO events were recorded in the years 1790–93, 1828, 1876–78, 1891, 1925–26, 1972–73, 1982–83, 1997–98, and 2014–16.

Typically, this anomaly happens at irregular intervals of two to seven years, and lasts nine months to two years.  The average period length is five years. When this warming occurs for seven to nine months, it is classified as El Niño “conditions”; when its duration is longer, it is classified as an El Niño “episode”.

There is no consensus on whether climate change will have any influence on the occurrence, strength or duration of El Niño events, as research supports El Niño events becoming stronger, longer, shorter and weaker.” [ some data from  Wiki ]

Analysis of past weather records shows that El Niños occurred about 30 times since 1900:

El_Nino_Occurences

As with all analysis of the past, earlier records are likely to have missed weak or short El Niños.  For instance, there was a strong El Niño 1931-1932 (which is not shown in the illustration above).   Today El Niños are mostly determined by satellite images and measurements.  It is impossible, of course, to counter any claim that concerns the future, so we must depend on the past for an idea of how frequent Major, or Super El Niños do occur.

Almost all of the Climate Change concern for the Galápagos rests on model predictions of double the number of El Niños and stronger El Niños through the 21st century.

“In short, if you are someone who wants more or stronger ENSO events in the future, I have great news for you – research supports that. If you are someone who wants fewer or weaker ENSO events in the future, don’t worry – research supports that too.” [ Climate.gov ]

“Year-to-year ENSO variability is controlled by a delicate balance of amplifying and damping feedbacks, and one or more of the physical processes that are responsible for determining the characteristics of ENSO will probably be modified by climate change. Therefore, despite considerable progress in our understanding of the impact of climate change on many of the processes that contribute to El Niño variability, it is not yet possible to say whether ENSO activity will be enhanced or damped, or if the frequency of events will change.”     [ CCSD ]

Here is how these worries related to reality:

There is no substantive evidence that strong or super- El Niño’s will occur more often or that they will be stronger or of longer duration.  Climate Science presently does not know what causes El Niños, though we can recognize the physical signs of ENSO changes.  Models cannot reliably predict/project El Niños in the future.  Thus:

1)  When there are future major El Niños, which is almost certain,  then there will be starving wildlife (seals, cormorants, penguins and marine iguanas) if and when upwelling slows, waters warm and  sardines move to better feeding spots.  This is the natural order of things.

2)  El Niños in the future will bring more rain to the dry Galápagos, as they have always done, which is good for most of the flora but has some downsides for the some of the fauna like giant tortoises (which prefer dry soil for egg laying).  Long rainy seasons can lead to waterlogging of the thin soils which can cause shallow-rooted plants, like the Giant Daisy Tree, to be blown down in storm conditions.

3)  El Niños will mean warmer sea surface temperatures by definition, which if high enough, can cause coral bleaching of the reefs around the islands.

These real threats from El Niños are no different today than they have been during the known past and we can confidently assume that these threats existed in the more distant past.  The ecological niche that is the Galápagos may actually have been created by and depend upon, in part,  the cyclical nature of the ENSO, with its El Niños and La Ninas.

Bottom Line – El Niños:  El Niño is not currently an increased risk for the Galápagos.  No evidence exists, other than unreliable model projections, that there will be more or stronger El Niño episodes or events in the future.

# # # # #

I did say, at the beginning:  “The fabled living treasures of this group of islands are threatened, besieged and at risk of disappearing forever long before we have had time to discover all of their secrets.”  If the risks are not Sea Level Rise, and not future El Niños, what is threatening the Galápagos? In one word:

SUCCESS

 UNESCO World Heritage gave us a hint: “Already under pressure from tourism development, population growth and the impacts of introduced species…”

The Galápagos Islands were at one time a sleepy little place, visited sometimes by curious scientists and photographers. Today:

“….the sheer growth in tourism, which has been fueled, in part, by the growing popularity of both shorter cruises and land-based tourism, has had an undeniable impact on the islands in recent decades. From 1990 to 2013, tourism arrivals increased from around 40,000 to just over 200,000. During that time, the population of the Galápagos increased from around 10,000 to just over 30,000 [currently believed to be 35-40,000], as Ecuadorians from the mainland migrated here in search of jobs and opportunities created, directly and indirectly, by the tourism industry.

Population growth in inhabited areas has created demand for new infrastructure, housing, automobiles, fresh water, sewage treatment and waste disposal. It has also lead to an increase in the number of new, small businesses in operation, which has further fueled immigration from the mainland.  [ source ]

Too many people — a quarter of a million people per year visit the Galápagos, stay in hotels, eat in restaurants, are taken by excursion boats to visit uninhabited islands, swim with the seals and sea turtles and drop their trash and cigarette butts everywhere.  All the natives (nearly 100 percent immigrants — both from mainland Ecuador and the world at large) and the tourists live on 3% of the land in the Galápagos — by decree from the government.  That’s a lot of people crammed into a little space.

All those tourists means lots of built infrastructure — water treatment plants, electrical generation (diesel fueled), fresh water wells, trash disposal, roads, marinas, hotels — all those tourists need local people to see to their needs and desires.  But luckily, this also means lots of tourist dollars, at least some of which remain in Ecuadorian hands.

And some of that money goes to fund conservation efforts.  Add to the local money grants from the UN and other NGOs, and there is a lot conservation work being done.

The islands need it — tagging along with the people came goats, dogs, cats, pigs, donkeys, cattle, chickens and rats — plus a veritable Noah’s Ark  of insects and some troublesome plants.

The worst of the invasive plants might be a blackberry — which establishes itself in distressed soil, such as storm damaged areas of Giant Daisy Trees forests.  The blackberries grow so quickly and so dense that the Giant Daisys cannot reestablish themselves.

Of course, feral pigs, goats, donkeys and cattle can nearly denude a whole small island in just a few short years.  Tourist dollars have financed elimination schemes (hunting, both from the ground and from helicopters) which have finally been successful on several islands.

“A goat eradication program, however, cleared the goats from Pinta and Santiago and most of the goat population from Isabela. In fact, by 2006 all feral pigs, donkeys and non-sterile goats had been eliminated from Santiago and Isabela, the largest islands with the worst problems due to non-native mammals.”

“…in 1996 a US$5 million, five-year eradication plan commenced in an attempt to rid the islands of introduced species such as goats, rats, deer, and donkeys. Except for the rats, the project was essentially completed in 2006.  Rats have only been eliminated from the smaller Galápagos Islands of Rábida and Pinzón.” [ Wiki ]

The government of Ecuador is making bold efforts to get the situation under control:    “In 1959, the centenary year of Charles Darwin‘s publication of The Origin of Species, the Ecuadorian government declared 97.5% of the archipelago’s land area a national park, excepting areas already colonised.”  Emigration to the Galápagos has been restricted and tourist visits to many sites are being monitored to keep fragile areas from being overrun.

Take Home Messages:

1)  The Galápagos Islands have weathered the storms of the Pacific for centuries, probably millennia,  and its plants and animals have survived and been shaped by their experiences.  They are not threatened in any unusual way in the present or the near future by Climate Change, Sea Level Rise or future El Niños.

2)  The real present threats to the treasures of the Galápagos Islands are too many people (both residents and tourists) and the arrival of invasive species over the last 500 years.

3)  The Galápagos Islands are home to some magnificent sights and interesting flora and fauna — if you are a Nature enthusiast, it is a great place to get to know.   It is better that you visit by proxy and let nature videos and photography inform you. — the Galápagos Islands already have too many visitors.

4)  If you must go, find a way to volunteer with one of the conservation groups so that your visit can be part of the solution.  (also here, here, and here. Some of these are commercial enterprises, buyer beware.)

5)   Various NGOs have programs to which you can donate:   The Galápagos Conservancy, The Charles Darwin Foundation, and the  The Galápagos Conservation Trust.

# # # # #

 Author’s Comment Policy:

So many of the world’s wonderful places suffer from too much fame and the resulting rush of tourists.  Much of the tourism is powered by the desire of the local people to gain financially.  Usually the next  cycle  brings in international travel and hotel conglomerates which insist in building giant hotels and providing all sorts of intrusive services such as guided walking tours, kayaking trips, scuba and snorkeling outings, motor-cat rides — all of which result in degraded environments.

Although the government of Ecuador changes every few years, it has made important strides in improving the situation in the Galápagos.   The Ecuadorian National Budget includes support for ongoing work in the Galápagos. UNESCO’s declaration of the Galápagos as a World Heritage site in 2007 has brought aid money from the UN and other international environmental organizations.

If you have been there recently, let us know in comments what you found.

If addressing me, begin your comment with “Kip…” so I’ll be sure to see it.

Are Climate Models Overpredicting Global Warming?

sunshine hours

The answer is yes.

Weather forecasters know that some models work better than others in specific situations, and they tend to rely on the versions that work best, depending upon the forecast problem. When the issue is a potential big snow along the eastern seaboard, forecasters usually lean upon the model from the European Center for Medium-Range Weather Forecasting (the “Euro” model). When diagnosing shifts in jet stream patterns a week or 10 days ahead, they may place more weight on the American Global Forecast System model.

But the United Nations’ Intergovernmental Panel on Climate Change simply averages up the 29 major climate models to come up with the forecast for warming in the 21st century, a practice rarely done in operational weather forecasting. As dryly noted by Eyring and others “there is now evidence that giving equal weight to each available model projection is suboptimal.”

Indeed. The authors…

View original post 142 more words

Hurricanes & climate change: 21st century projections

Climate Etc.

by Judith Curry

Final installment in my series on hurricanes and climate change.

View original post 4,485 more words

Bias Or Corruption Of Temperatures

Reblogged from Musings from the Chiefio:

Here are two very good videos per issues in the Temperature Record.

The first, at 15 minutes, is a short overview of motivations of government employee “science” and some of the issues involving just how unimportant any actual warming might be. Touches on the point that government only gets what it pays for, and it pays for alarmist results. By Roy Spencer at “America First Energy Conference”. Titled “Climatologist Roy Spencer – The Bias In Climate Science”.

The second is longer, at about 53 minutes. By Tony Heller and titled “Evaluating The integrity Of The Official Climate Records”; it has a great set of A/B comparisons of what they said then vs now. Demonstrates graphically the way that the past is “mailable” in the hands of NASA / NOAA / IPCC. It is from 2 years ago, and similar to his other presentation from last year, but still good.

In particular, at the Q&A part, he tells how he digs up all those lovely old news articles about the very hot 30’s and the very cold 70’s. Useful information, that.

What Warming 1978 to 1997?

Science Matters

Flawed thermometers can lead to false results.

Those public opinion surveys on global warming/climate change often ask if you believe the world has gotten warmer in the last century. Most all of us answer “Yes,” because that is the data we have been shown by the record keepers.  Fred Singer, a distinguished climate scientist, asks a disturbing question: “What if trends in surface average temperatures (SAT) were produced by biases of the instruments themselves, rather than being a natural fact?.  He makes his case in an article at The Independent The 1978-1997 Warming Trend Is an Artifact of Instrumentation  Excerpts below in italics with my bolds.(H/T John Ray)

Now we tackle, using newly available data, what may have caused the fictitious temperature trend in the latter decades of the 20th century.

We first look at ocean data. There was a great shift, after 1980, in the way Sea Surface…

View original post 593 more words

February Land and Sea Mixed Cooling

Science Matters

banner-blog

With apologies to Paul Revere, this post is on the lookout for cooler weather with an eye on both the Land and the Sea.  UAH has updated their tlt (temperatures in lower troposphere) dataset for January.   Previously I have done posts on their reading of ocean air temps as a prelude to updated records from HADSST3. This month I will add a separate graph of land air temps because the comparisons and contrasts are interesting as we contemplate possible cooling in coming months and years.

Presently sea surface temperatures (SST) are the best available indicator of heat content gained or lost from earth’s climate system.  Enthalpy is the thermodynamic term for total heat content in a system, and humidity differences in air parcels affect enthalpy.  Measuring water temperature directly avoids distorted impressions from air measurements.  In addition, ocean covers 71% of the planet surface and thus dominates surface temperature estimates.  Eventually…

View original post 505 more words